
ASTRA-5G: Automated Over-the-Air Security Testing and
Research Architecture for 5G SA Devices

Syed Khandker
New York University Abu Dhabi

Abu Dhabi, UAE
syed.khandker@nyu.edu

Michele Guerra
University of Molise

Pesche, Italy
michele.guerra@unimol.it

Evangelos Bitsikas
Northeastern University

Boston, USA
bitsikas.e@northeastern.edu

Roger Piqueras Jover∗
Google

New York, USA
rogerpiqueras@google.com

Aanjhan Ranganathan
Northeastern University

Boston, USA
aanjhan@northeastern.edu

Christina Pöpper
New York University Abu Dhabi

Abu Dhabi, UAE
christina.poepper@nyu.edu

ABSTRACT
Despite the widespread deployment of 5G technologies, there exists
a critical gap in security testing for 5G Standalone (SA) devices. Ex-
isting methods, largely manual and labor-intensive, are ill-equipped
to fully uncover the state of security in the implementations of 5G
SA protocols and standards on devices, severely limiting the ability
to conduct comprehensive evaluations. To address this issue, in
this work, we introduce a novel, open-source framework that auto-
mates the security testing process for 5G SA devices. By leveraging
enhanced functionalities of 5G SA core and Radio Access Network
(RAN) software, our framework offers a streamlined approach to
generating, executing, and evaluating test cases, specifically fo-
cusing on the Non-Access Stratum layer. Our application of this
framework across multiple 5G SA devices provides in-depth secu-
rity insights, significantly improving testing efficiency and breadth.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security.

KEYWORDS
5G, Security, Automated Testing, Open5GS, srsRAN
ACM Reference Format:
Syed Khandker, Michele Guerra, Evangelos Bitsikas, Roger Piqueras Jover,
Aanjhan Ranganathan, and Christina Pöpper. 2024. ASTRA-5G: Automated
Over-the-Air Security Testing and Research Architecture for 5G SA Devices.
In Proceedings of the 17th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’24), May 27–30, 2024, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3643833.3656141

1 INTRODUCTION
5G networks can be deployed using two main architectural ap-
proaches: Non-Standalone (NSA) and Standalone (SA). While both
NSA and SA architectures facilitate 5G deployment, they differ
∗This author did not contribute any code for this project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0582-3/24/05.
https://doi.org/10.1145/3643833.3656141

significantly in their approach. NSA provides a quicker and more
cost-effective entry point by leveraging existing 4G infrastructure,
making it an ideal choice for early adopters. However, its reliance
on older technology limits its potential. In contrast, SA represents
the future-proof option. Operating independently, it unlocks the full
spectrum of 5G capabilities, including advanced network slicing,
ultra-low latency, massive machine-type communication, stronger
authentication, and enhanced privacy mechanisms. This paves the
way for groundbreaking applications and services, making SA the
preferred choice for long-term investments and unlocking the true
potential of the 5G revolution.

The specification outlines the maximum security levels achiev-
able by a cellular network. However, research into previous gener-
ations (e.g., 3G, 4G) has revealed instances of less robust security
implementations compared to those specified [19]. Various factors
such as limited resources, technological constraints, implemen-
tation complexity, unclear specifications, or a lack of awareness
regarding emerging threats could contribute to this deviation. Addi-
tionally, prioritizing other features during development may have
led to compromises in security. Therefore, it is crucial to assess the
level of implemented security, especially in 5G SA, as it represents
the most recent advancement in cellular technology.

While extensive security research has been conducted on the
5G protocol [13, 18, 20], there remains a notable gap in attention
towards verifying the security of implementations in 5G devices.
Moreover, current security testing frameworks and fuzzing ap-
proaches are predominantly tailored for 4G/LTE networks [10, 17,
37]. While these frameworks may be applicable to 5G NSA, they
lack the capability to detect security vulnerabilities in 5G SA en-
vironments. 5G SA introduces architectural changes (e.g., service-
based architecture, network slicing) and new security mechanisms
(e.g., stronger authentication, better privacy mechanism), which
increases the complexity of network interactions. User Equipment
(UE) needs to interact seamlessly with these network elements,
and any vulnerabilities in their communication protocols or imple-
mentation could compromise the security of the entire network.
Although some recent studies have begun addressing the security
of 5G SA devices [6, 42], these efforts primarily rely on manual
processes. Utilizing such tools also requires a deep understand-
ing of the various protocols, devices, and networks, and involves
labor-intensive tasks that consume considerable time to analyze test

89

https://doi.org/10.1145/3643833.3656141
https://doi.org/10.1145/3643833.3656141
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643833.3656141&domain=pdf&date_stamp=2024-05-27

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

results and make decisions. Essentially, there is an unexplored re-
quirement for an automated testing framework tailored specifically
to assess the implemented security in 5G SA UE, with the capa-
bility to autonomously generate test cases, conduct over-the-air
execution, and comprehensively evaluate the resulting outcomes.

To address the aforementioned gap and work towards trans-
parency and comparability of 5G UE security implementations, in
this work, we design and develop an automated 5G SA device se-
curity testing framework. This framework can efficiently generate
test cases based on user requirements, execute tests on a designated
5G smartphone, collect reports, and evaluate the results comprehen-
sively. A significant challenge to achieving full automation is the
complexity and scale of the system. The sheer number of possible
message combinations, network configurations, and parameter set-
tings that exist in 5G SA results in a state-space explosion, making
it impractical and further complicating the task of identifying and
mitigating security weaknesses. It is important to develop a frame-
work that can efficiently navigate the vast array of potential states
and interactions. We tackle this challenge by leveraging modified
functionalities of open-source 5G SA core and Radio Access Net-
work (RAN), and expert knowledge on specifications and network
configuration.

Specifically, our paper makes the following contributions:

• We have developed the first automated over-the-air security test-
ing framework tailored for 5G SA devices. The framework inte-
grates open-source software (Open5GS, srsRAN, etc.) and stream-
lines the detection and mitigation of security vulnerabilities in
5G SA devices.

• Our framework introduces an advanced process for generating
test cases that target the Non-Access Stratum (NAS) layer, en-
abling comprehensive testing considering both uplink and down-
link traffic. This process is designed around a dynamic parameter
selection mechanism, leveraging a combination of rule-based
systems and algorithmic checks to enable testing across a wide
range of scenarios, including security violations, protocol mis-
implementations, and undefined corner cases.

• For evaluating the test-case results, we design a rule-based auto-
matic evaluation tool that simplifies the assessment of UE NAS
security by systematically analyzing test outcomes. This innova-
tion minimizes manual intervention and enhances accuracy in
identifying security weaknesses. Additionally, we utilize publicly
available Large Language Models (LLMs), which show promising
potential for comprehensive evaluation.

• The framework demonstrates its effectiveness by detecting sev-
eral security-related issues specific to 5G SA devices, such as
the use of temporary Anti-Bidding-down Between Architectures
(ABBA) values, incompetence in adhering to protocols when
identity is requested, etc.

Responsible Disclosure and Open Sources. As part of respon-
sible disclosure, we have notified the relevant UE manufacturers
regarding our findings. To support further research and investi-
gations on this topic, we make our code available on GitHub at
https://github.com/s21sm/ASTRA-5G.

Figure 1: 5G SA Architecture

2 BACKGROUND AND RELATEDWORK
2.1 5G Standalone Architecture
The SA architecture of 5G represents a significant advancement
in cellular technology, providing a fully independent network in-
frastructure capable of delivering the full spectrum of 5G services
and capabilities without relying on any legacy technology such as
4G. In 5G SA architecture, the core network functions have been
redesigned to accommodate the unique requirements of 5G, en-
abling ultra-low latency, enhanced network slicing, and improved
scalability compared to previous generations. Figure 1 shows the
5G SA architecture. In this section, we briefly give an overview of
the various components of 5G SA architecture.

Access and Mobility Management Function (AMF): The
AMF is a pivotal component in the 5G Core Network, tasked with
managing access and mobility of UE. It oversees user registration,
authentication, and session management, and supports mobility
across different networks, ensuring continuous connectivity and
efficient mobility management within the 5G infrastructure.

Session Management Function (SMF): The SMF plays a cru-
cial role in session management within the 5G core network. It han-
dles the establishment, modification, and release of user sessions,
allocates network resources according to service requirements, and
orchestrates the data flow within the network, ensuring that data
packets are correctly routed and forwarded to their destinations.

User Plane Function (UPF): Serving as a key element in data
forwarding and routing, the UPF connects the 5G network with
external networks or services. It processes user data packets (User-
Plane traffic), supporting packet inspection, charging, and applica-
tion of traffic policies, which are essential for optimized network
resource utilization and enhanced quality of service.

Next Generation NodeB (gNodeB): The gNodeB is the base
station in the 5G RAN, providing wireless communication with UEs.
It manages radio resources, implements advanced signal processing
techniques, and connects to the 5G core network, enabling the
delivery of diverse mobile services.

Data Network (DN): The Data Network represents external
networks accessible by UEs, including the internet, corporate, and
service networks. It is fundamental to the 5G architecture, enabling
connectivity to a vast array of content and services.

User Equipment (UE): UEs include a wide range of devices
such as smartphones, tablets, and IoT devices that communicate
with the 5G network. They support various services enabled by 5G,
while serving as critical endpoints in the network.

90

https://github.com/s21sm/ASTRA-5G

ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

2.2 Related Work
Recent studies in 5G security testing for UE have introduced in-
novative methodologies [6, 43], offering strategies to modify the
execution flows of 5G protocols. This enables practical examina-
tion of specific parameters in commercial off-the-shelf (COTS) UEs
without heavy reliance on specifications, potentially uncovering
implementation flaws. However, the predominantly manual nature
of these methods limits their ability to conduct extensive testing
across a broad spectrum of parameters and a vast number of tests.

The integration of natural language processing models and ma-
chine learning for detecting vulnerabilities in LTE and 5G protocols
has been a subject of recent investigation [9, 20, 23]. These ap-
proaches involve scanning and parsing extensive collections of
3GPP specification documents to generate test cases, uncovering
vulnerabilities or discrepancies within the protocols. Chen et al. [8]
highlight the severe implications of specification errors, such as
design flaws and presentation issues, with a particular focus on
the widespread issue of inconsistent descriptions (misalignment) in
security-critical content. In a different vein, Klischies et al. [27] have
put forward a method for specification analysis without machine
learning that focuses on modeling and synthesizing counterexam-
ples, leading to undefined behaviors in LTE.

5GReasoner [18] offers a formal verification method for the 5G
control plane, while LTE-Inspector [17] applies symbolic model
checking and cryptographic protocol verification to uncover secu-
rity flaws on LTE. ProChecker [22] utilizes semanticmodels as finite-
state machines for testing, and the Non-compliance checker [19]
adopts a property-agnostic, black-box approach for control-plane
testing in COTS UEs. Alternatively, vulnerability detection through
over-the-air dynamic testing within the LTE control plane has been
demonstrated [12, 26], going beyond the capabilities of protocol
verification. Additionally, DoLTEst [35] emphasizes negative test-
ing with deterministic oracles based on specification analysis to
reveal LTE implementation flaws. Rupprecht et al. [38] target the
discovery of LTE security function flaws, such as in data encryption
and network authentication.

Dedicated testing frameworks have also been developed to specif-
ically target baseband vulnerabilities. BaseSAFE [29] and FIRMWIRE
[16] stand out for their effectiveness in detecting security vulnera-
bilities through fuzzing. AutoFuzz [13] focuses on identifying vul-
nerabilities through malformed and out-of-order packet analysis,
whereas Berserker [37] specializes in ASN.1-based fuzzing tech-
niques. Kim et al. [25] offer a comparative analysis between base-
band software and cellular specifications to systematically inspect
how message structures are implemented in baseband software.
Building on this, [24] presents BaseComp, an enhancement over
BaseSpec that conducts a comparative analysis including integrity
protection in cellular baseband software, and notably improving
the level of automation.

Although there have been previous studies on over-the-air device
security testing, they either focus on previous-generation networks
(e.g., 4G LTE) or lack automation functionalities, posing challenges
for large-scale security testing. Our framework provides automation
for 5G security implementation testing for SA devices.

3 SECURITY TESTING AUTOMATION
FRAMEWORK DESIGN

3.1 Overall Goal and Challenges
Our framework is designed with a single, clear objective: to enhance
the security of 5G SA devices through an automated testing process.
This process aims to identify and analyze both existing and emerg-
ing vulnerabilities, ensuring transparency and independence in
evaluations. By focusing on automated over-the-air security evalua-
tions, the framework provides researchers, developers, practitioners,
and industry experts with detailed insights into the security of 5G
SA devices, potentially enabling them to make informed decisions
to improve device security. The design and development of such a
framework face three main challenges as detailed below.

Test Case Generation. The first significant challenge arises from
the need to generate test cases, a critical component of any secu-
rity testing framework. The complexity here in the context of 5G
cellular technology stems from the vast amount of protocol-related
information scattered across numerous 3GPP documents, combined
with the varied preferences for security testing among researchers.
To tackle this, we have developed a test case generator that allows
researchers to create customized test cases tailored to their spe-
cific needs, addressing the issues of information fragmentation and
individual preference.

Test Execution. The second challenge involves executing the
test cases on a 5G SA network to monitor the UE response. This
process requires a network setup that supports 5G SA, including
both Core and RAN that can facilitate the loading and execution of
test cases. Although this can be achieved through a modified open-
source 5G core and RAN, executing these test cases still requires
a systematic procedure that includes deploying the core with the
test case, activating the RAN with an RF front end, and guiding
the UE to register with the network. If this process is manual, it
must be repeated for each test case, making it labor-intensive and
time-consuming. Our framework aims to alleviate these burdens
by allowing for the sequential, automated running of multiple test
cases, thus saving significant manual effort and time.

Result Evaluation. The final challenge is evaluating the UE re-
sponse to determine the security test outcome. Traditionally, this
step has been manual, involving the use of network packet analyzer
tools like Wireshark, which is both time-consuming and labor-
intensive. To overcome this, we propose a programming-based
evaluation tool within our framework that automatically generates
reports for each test case by analyzing the input (test case) and
output (pcap file). This tool similar to [6] considers the state ma-
chine of the UE during both the test case generation and evaluation
phases, facilitating an accurate assessment of whether the UE’s
behavior conforms to the standards.

In summary, our framework focuses on automating the entire
pipeline of test case generation, test execution, and evaluation pro-
cess. The current lack of automation in these areas hinders mass-
scale testing, is time consuming, and requires a labor-intensive
evaluation process prone to human errors. Specifically, our frame-
work aims to automate not only the test generation and execution

91

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

Figure 2: Automation process

processes but also the security evaluation phase. For example, we de-
velop a rule-based security evaluation program. Besides, we explore
the potential use of well-known LLMs for acquiring and analyz-
ing results. By integrating our targeted automation solutions and
LLMs, our framework takes a first step towards facilitating a more
efficient, accurate, and scalable security assessment process for 5G
SA devices.

3.2 High-level Framework Overview
Our framework, aimed at testing security-related issues in 5G SA
devices, is structured into three main components: test case gener-
ation, test execution, and result evaluation, as depicted in Figure 2.
This structure facilitates a systematic approach to identifying and
addressing vulnerabilities in 5G SA devices.

Approach and Assumptions. To support our testing framework,
we have made key selections and assumptions regarding the core
and RAN software. After a comprehensive analysis, Open5GS [32]
and srsRAN [39] were chosen for the core network component and
gNodeB, respectively, due to their balance of simplicity, reliability,
and robust support for 3GPP standards. These software choices
are also well-regarded in the research community and have been
leveraged in prior work [6, 21, 30].

Building on the execution methodology from [6], our framework
adopts a similar strategy for modifying the NAS reception, handling,
and machine state to facilitate NAS test cases. This method allows
us to customize the message and parameter transmission, ensuring
compatibility with the execution flows of established works. Our
approach includes comprehensive security assessments of COTS
UEs from various manufacturers. This necessitates access to the
testing framework and a USRP for over-the-air testing, allowing for
adjustments to UE and USIM settings as needed. These foundational
assumptions set the stage for our security testing framework.

Test CaseGeneration. The initial phase involves an in-depth study
of 3GPP documents to understand 5G device security (1). We then
explore Open5GS capabilities, focusing on supported uplink and
downlink commands and parameters. This exploration leads to
the development of a test case generator software, which selects
downlink messages and their parameters, assigning values to create
test cases (2).

Test Execution. In this stage, our framework selects a test case
from the database (3), loads it into the core network (4), and
initiates the gNodeB (5). The UE equipped with a programmed
USIM, connected via USB (6), is prepared for testing by toggling
from airplanemode to normal mode using the pure-python-adb [41]
library, enabling network registration (7). Open5GS then sends
a downlink NAS message based on the test case, to which the UE
responds, completing the execution phase. Network packets are
recorded using tcpdump, along with AMF, gNodeB, and ADB logs
(8), aiding in understanding the test’s execution flow. Following
the completion of a test case, the core and network services are
torn down, and the UE is instructed to enter airplane mode in
preparation for the next test case.

Result Evaluation. The final phase evaluates the UE’s response
using a program that compares the actions of the UE, based on pcap
files, against the expected behavior defined by the test case (9). The
test case contains a set of custom instructions or information that is
provided to the UE by the core using downlinkNASmessages. These
instructions can adhere to the protocol or intentionally violate the
protocol to assess how the UE responds. Any deviation from the
standard protocol is flagged, with the evaluation results compiled
into a PDF report (10). The framework utilizes both rule-based
and LLM-based approaches to evaluate the UE response.

4 AUTOMATED TEST CASE GENERATION
We evaluate 5G device security using NAS messaging. Informa-
tion regarding NAS messaging is dispersed across various 3GPP
documents, such as the NAS protocol [1] and the 5G security ar-
chitecture [2]. Any targeted security feature needs to be supported
by the core network, which instructs the UE to act accordingly
through the RAN. If the core network software implementation
does not support a particular security feature, then it cannot be
tested. Therefore, in addition to reviewing 3GPP documents, we
also scrutinized the source code of Open5GS to gain a better under-
standing of the parameters for different test cases. In this section,
we provide details on our automatic test case generation software.

NASMessages and Security Parameters. The list of NAS mes-
sages and their respective parameters is defined in [1, in Section 8].
Each message includes mandatory and optional parameters, many
of which offer multiple possible values. Sometimes, these values
have security implications. For instance, the Security header
type specifies the security mechanism applied to a message, di-
rectly influencing system security. UE security requirements, as
outlined in [2], encompass algorithm implementation, subscriber
privacy, and the secure handling of subscription credentials, etc.

Upon reviewing the protocols, we turned our attention to the
implementation of Open5GS. Interestingly, Open5GS introduces

92

ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Table 1: Supported NAS messages in our framework

Uplink Downlink
Registration Request Identity Request
Identity Response Authentication Request
Authentication Response Security Mode Command
Security Mode Complete Configuration Update Command
Registration Complete Service Accept
UL NAS Transport Service Reject
Service Request GMM Status
Security Mode Reject Deregistration Request
Authentication Failure Deregistration Accept
Deregistration Request Authentication Reject

Registration Reject

additional parameters not listed in the 3GPP documents. For exam-
ple, the Security Header For Service Request Message found
in Open5GS is absent in the 3GPP specifications [1, in 9.3]. We
cataloged all parameters for NAS messages supported by Open5GS,
noting that while some parameters are protocol-defined e.g., 5GMM
causes, others allow arbitrary values such as RAND and AUTN.
We organized these into lists for supported downlink NAS mes-
sages, facilitating our testing approach. Table 1 summarizes the
NAS messages analyzed in our experiments.

Execution Flow and Message Sequences. The uplink serves
as a critical hooking point, directing the core to the intended execu-
tion point for the downlink message. For effectiveness, the chosen
uplink must be a regular NAS message that occurs during normal
attach flow. Through extensive analysis of numerous pcap files, we
identified sevenmessages that regularly occur (the first seven uplink
messages in Table 1). In our framework, other uplinks like Security
Mode Reject, Authentication Failure, and Deregistration
Request are also supported. However, since these messages lead to
disconnection, there is no subsequent UE response for assessment.

Similarly, we determined that 11 downlink messages are appro-
priate for our testing, resulting in a total of 77 different possible
sequences. These sequences vary; some are considered valid accord-
ing to the protocol, while others are not. Investigating how a UE
responds to both valid and invalid sequences presents an intriguing
aspect of our study, potentially revealing insights into UE behavior
under various conditions.

Design and Capabilities of the Implemented Tool. The test
case generation software is built around a dynamic parameter se-
lection mechanism, utilizing a combination of rule-based systems
and algorithmic checks to cover a wide range of test scenarios. We
have developed a Graphical User Interface (GUI) using the Tkinter
Python library, which creates a user-friendly graphical interface.
This interface facilitates interaction between the software’s users
and its backend logic. The GUI module is organized into distinct
sections for selecting uplink and downlink messages, displaying as-
sociated parameters, and configuring options for test generation, as
illustrated in Figure 5 (in the Appendix). This modular approach in
the GUI design ensures dynamic updates of each component based
on user interactions and preferences. For example, when a down-
link message is selected, the parameters section is automatically
populated with checkboxes for each available parameter of that

message. Users can easily select or deselect any parameter, allowing
for customized test case generation. If a mandatory parameter is
not selected, Open5GS resorts to using the default value.

The test-case-generating module is encapsulated within an algo-
rithm that takes into account user-selected parameters, their possi-
ble values, and the chosen mode of test generation (randomized or
all-inclusive). This algorithm employs a mix of combinatorial logic
and randomness to ensure a thorough exploration of the test space.
It operates in dual mode: by default, it explores all possible sub-
sets of the selected parameters through a combinatorial approach
to maximize coverage, incorporating randomness to enhance the
robustness of the generated test cases. Conversely, when the use
all selected params option is activated, the algorithm shifts to a
deterministic mode, using every selected parameter to create spe-
cific testing scenarios tailored to the user’s needs. Notably, each
parameter has several potential values listed in the codebase, with
only one value selected randomly for each test case.

Based on the given Number of tests the program randomly gener-
ates that amount of test cases. To ensure reproducibility, a specific
seed number can be utilized. This feature allows the software to con-
sistently regenerate the exact test case or the entire suite of tests in
the future. Some NAS messages, as specified, are security-protected,
whereas others are not. The modified Open5GS, however, permits
sending a security-protected message as either plain or unprotected.
This functionality serves as an effective method for assessing UE
security. Hence, in the test case generator, we include the option to
send as a plain message, which inserts a security disable instruction
into the test case. Consequently, instead of sending a security-
protected message, Open5GS will transmit that downlink message
as a plain one. Test cases are saved in JSON format. Figure 6 (in the
Appendix) displays a sample test case, and Table 5 (in the Appendix)
lists the supported downlink NAS messages and their parameters.

5 AUTOMATED TEST CASE EVALUATION
5.1 LLM-Based Evaluation
LLMs are advanced artificial intelligence systems designed to under-
stand and generate human-like text or programming code. These
models leverage deep learning techniques and are trained on vast
amounts of diverse data, including 3GPP documents. Generally,
these documents are very large in size (e.g., sometimes thousands
of pages), and information regarding particular issue is sometimes
scattered across different documents. Retrieving information about
a specific issue from these documents can be cumbersome, and
hectic, and may result in human errors. Researchers in the wireless
security domain have started using LLMs to address these chal-
lenges [5, 20, 28]. However, their aims and approaches are quite
different to ours. For example, [20] attempts to find vulnerabilities
in cellular network protocols by synthesizing finite state machines
using natural language processing. [5] utilize various variants of
BERT [11] to identify the 3GPP specification categories with their
corresponding working groups. [28] develops a conversational ar-
tificial intelligence tool for synthesizing information on wireless
communication specifications, using ChatGPT, which provides bet-
ter explanations for queries related to wireless communication.
Our objective is to evaluate UE responses for different test-case
scenarios. Here, we describe our approach.

93

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

5.1.1 ChatGPT. As a state-of-the-art language model developed by
OpenAI [33], ChatGPT was trained with approximately 175 billion
parameters. First, we checked whether ChatGPT has knowledge
of 3GPP documents by asking random questions about the NAS
protocol and requesting it to copy a paragraph from a specific
page number. Although the answer was not perfect, it provided a
satisfactory level of response. ChatGPT works based on prompts,
which refer to the input or query provided by the user to the model.
Initially, we generated a prompt using a Python program, describing
the purpose of the test. The prompt includes crucial information
such as UE state, downlink message parameters, UE’s response,
etc. To make the scenario clearer, we converted the content of the
pcap file to a text-based format (pre-processing, see Figure 4 in the
Appendix) and finally delivered the full prompt to the ChatGPT 4.0
model using the Python API. After processing, ChatGPT provided
its evaluation, including the reasoning for the answer.

5.1.2 Google Bard. Google Bard [15] is an LLM offered by Google.
It is based on the PaLM 2 model, a more current updated model. It
not only provides insights based on the latest advancements in the
5G domain but also has the capability to incorporate information
directly from the web. Given the absence of public APIs, we used a
third-party Python library [36] from GitHub to engage with Google
Bard, simulating API interactions through session cookies. This
method allowed us to query Bard and receive responses, effectively
bypassing the lack of direct API access. In our implementation, we
utilized specific cookie values (Secure-1PSID, Secure-1PSIDTS,
Secure-1PSIDCC) to establish a session with Bard. The very same
prompt format that was used for ChatGPT was given to Google
Bard as well.

5.1.3 LLaMA-2. LLaMA-2 [31] is open-source and deployable on
our hardware directly from Hugging Face, following the acquisi-
tion of a non-commercial license from Meta. We ran the LLaMA-2
language model on a local machine equipped with Python 3.11
to initiate our process by cloning the LLaMA-2 repository. After
building the llama.cpp repo, we executed the download.sh script,
specifying the download of the llama-2-70b.chat parameters.
Our choice to use the chat-optimized model was driven by the aim
of achieving results similar to those of conversational models like
Bard and ChatGPT. This decision was particularly pertinent given
our need for natural language explanations alongside test evalu-
ations. We activated a Python virtual environment for LLaMA-2
to isolate project tools and prevent version control conflicts with
other projects. We then converted both models to the f16 format
and created quantized models, ggml-model-q4-0.bin, to reduce
the size further. Adapting the Python script used previously for
Bard and ChatGPT, we included LLaMA-2. The script was designed
to send detailed prompts to LLaMA-2 and parse its responses.

5.2 Rule-Based Evaluation
We created a Python-based test case evaluation program. First, we
generated approximately 26,000 test cases for 77 possible sequences
(7 uplink × 11 downlink), the number of test cases depends on the
parameters (listed in Table 5). We then executed those for two UEs,
namely Huawei and Oneplus. The execution program saved all pcap
files. Since some of our test cases try to violate the protocol, not all

of them are executed (approximately 80% were executed). From the
pcap files, initially, we manually checked a few hundred to retrieve
UE responses against the test cases. After observing the pcap file
structure and how the test case and UE response are related, we
developed a Python script to retrieve UE responses from all pcap
files. The unique UE responses are limited in number. For example,
we have identified three possible UE responses to identity requests:
Identity response, Deregistration request (UE originating), or no
response at all. Thus, we developed a UE response database and
grouped them according to the sequences. During the evaluation,
this database helps to determine whether our program has experi-
ence with that UE response or not. If the response is found in the
database, then it is confirmed that our program evaluation program
has the evaluation logic for that. If not, then the evaluation program
reports that as a new observation and instructs to check the result
manually. In reality, almost all the time the UE response is found
in the database since we listed all possible types of responses by
running a large number of test cases on two different UEs. However,
we have kept the database comparison option open to handle any
unexpected situations, such as if a UE behaves very differently due
to design or implementation differences.

We thoroughly examined all types of UE responses (i.e., UE’s
uplink messages against manipulated downlink messages with ma-
nipulated parameters) and tried to find out what factors affect them.
Some downlink parameters are associated with security, while oth-
ers are not. For example, during the registration process, if the
system is congested, the AMF may send Registration Reject
with timer T3346 value instructing UE to wait until the timer expiry
before the next registration attempt. In this case, the downlink pa-
rameter T3346 is merely an instruction to the UE and is not related
to security, so changing this timer value does not impact the UE
response. However, in the Security Mode Command, the integrity
algorithm and encryption algorithm, or in each downlink message,
the security header type is directly associated with the UE response.

Our examination revealed which parameters impact the UE re-
sponse, helping us develop the logic of evaluation. Besides downlink
parameters, the current state of the UE also impacts the UE response.
For example, if a UE does not complete registration, it cannot ac-
cept a Deregistration Request from the AMF. We thoroughly
examined all these impacting scenarios and developed the evalua-
tion program. We were particularly interested in uncovering cases
where the UE could be susceptible to privacy violations (revealing
sensitive information, such as IMSI), authentication-encryption-
integrity-security violations, and denial of service.

The program requires a test case file and the corresponding
pcap file to determine whether a UE passes or fails a test. Before
each test is executed, the core, the gNodeB, and the UE are started
from scratch. Thus, from the test case file’s uplink and downlink
commands, it is possible to determine the state of the UE. Then,
downlink parameter values are extracted from the pcap file using
Tshark. These parameter values can be extracted from the test
case file; however, if a test case does not contain some mandatory
parameter fields of a downlink message (i.e., not part of that test),
Open5GS uses the default value. So, extracting the parameters from
the pcap file is better. Next, it extracts the UE response.

The positive responses are more impactful than the non-positive
responses. For example, in the case of the Security Mode Command

94

ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Figure 3: Experimental Setup

downlink message, a UE can respond with “Security mode rejected
(unspecified)”, “Security mode reject (UE security capabilities mis-
match)”, “Security mode complete”, or not respond at all. Among
these, only “Security mode complete” indicates that the UE accepted
all the parameters given in the test case, making it a good candidate
for checking UE security. However, for non-positive responses, it is
still possible to check whether the UE handled the message integrity
or security header correctly or considered the current connect state.

For each type of downlink message, the program checks whether
the UE response complies with the protocol. The program also
considers other security-related parameters, such as security header
type, ABBA, integrity and ciphering algorithm, etc. After checking
all the conditions, the evaluation program decides on whether a UE
passes or fails the test, providing a brief explanation that we coded
in the program. If a decision cannot be made (due to a corrupted
pcap file, missing uplink or downlink commands, unforeseen UE
response, or any other unexpected situation), it reports the decision
as inconclusive and includes a remark to check manually. The
program delivers a final report in PDF form, listing the test name,
test content, UE response, test status, and remark.

6 EXPERIMENTS AND RESULTS
6.1 Experimental Setup
The test bed consists of a Lenovo ThinkPad E15 equipped with 38GB
of RAM and an Intel Core i7-1255U processor, running Ubuntu 20.04,
a USRP B210, and five 5G SA-supported UEs, as described in Table 3.
The automated test case executor runs the Open5GS core and the
srsRAN’s gNodeB in the same device, with a few seconds delay to
allow synchronization. To eliminate all sorts of interference, the
tests were conducted inside a Faraday cage containing only the
UEs and USRP antennas. Our custom-made Faraday cage has RF-
protected USB and antenna connectors. The UE was connected to
the laptop using a USB 2.0 connection, while the USRP used a USB
3.0 connection.

We used Sysmocom SJA2-type USIMs for the UEs. The USIMs
come with default settings, which might not be valid for a 5G SA

Table 2: Performance analysis of the test case generator

Tests Scenario Execution Time
(in seconds)

Function
calls

Without Additional Options 0.002 957
With Plain Message Option 0.002 10211
With All Parameters Option 0.002 843
Without Additional Options 0.106 51789
With Plain Message Option 0.125 91777100
With All Parameters Option 0.097 87149
Without Additional Options 1.214 875733
With Plain Message Option 1.070 9208251000
With All Parameters Option 0.845 874004

connection. To ensure that all settings are correct, we used a USIM
programming tool named PySim [34] to update the USIM service
table, especially enabling service 124 to support SUCI and all the
necessary 5G features.

The network was configured with PLMN ID 00101, so the USIMs
were programmed accordingly, i.e., MCC equal to 001, and MNC to
01. If the USIM and network use any value other than 00101, the
UEs refuse to connect to the network, which is a common issue for
all open-source software suites [7, 40]. It should be noted that for
framework evaluation purposes, 00101 PLMN is sufficient. However,
for accuracy of the security results, commercial settings are required.
Only one of our test UEs (Honor) established a connection with
both the USIM side and network side using a value other than
00101. To address 5G SA connection stability issues, it is advised
to use a low value for both uplink and downlink Modulation and
Coding Scheme (MCS). Our connection remained stable with any
chosen value. Additionally, we utilized a GPS-disciplined oscillator
(GPSDO) with the USRP which created a GPS lock for a more
accurate clock reference. Figure 3 shows our experimental setup.

Table 3: 5G SA devices and their specifications

Device Chipset OS Model Release

Honor X9a 5G Snapdragon 695 Android 12 RMO-NX1 2023
Huawei P40 Pro 5G Kirin 990 5G Android 10 ELS-NX9 2020
Oppo Reno8 Z 5G Snapdragon 695 5G Android 13 CPH2457 2022
Realme 8 5G Dimensity 700 Android 11 RMX3241 2021
OnePlus Nord 2 5G Dimensity 1200 5G Android 11 DN2101 2021

6.2 Performance Analysis of Automated Test
Case Generation

We executed a performance analysis of the test case generator
on the same device. We used the cProfile module, focusing on
generating test cases for the downlink message Security Mode
Command. This message was chosen due to its complexity, offering
20 selectable parameters. We observed distinct performance im-
pacts when enabling options like Send as a plain message and Use
all selected params, as described in Table 2. For instance, generating
a single test case demonstrated baseline performance metrics. En-
abling Send as a plain message slightly altered performance, indicat-
ing minimal overhead for this security feature. However, activating
Use all selected params showcased the tool’s capability to handle

95

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

full parameter sets without significant performance degradation.
Scaling the number of test cases to 100 and 1000 revealed the tool’s
scalability, with marginal performance differences between the con-
figurations. This scalability is crucial for extensive testing sessions,
demonstrating the tool’s capability to handle large-scale testing de-
mands without significant delays. Through this analysis, we affirm
the tool’s robustness and flexibility in generating a broad range of
test cases.

6.3 LLM-Based Evaluation Results
LLMs provide evaluations of the test based on a given prompt. Using
the prompt, through API, we queried LLMs whether the UE passed
the security test or not. Sometimes, LLMs might not have a definite
answer, so we instructed the LLMs that if they cannot provide a
definite answer, they should report it as inconclusive. In any case,
for all answers, we requested a brief explanation to support their
response. To check the quality of the evaluation, we reviewed a
few hundred responses from LLMs manually. Figure 4 shows an
example of a prompt and ChatGPT answer.

Results.We found that LLMs provide decent answers for straight-
forward test cases. For example, for identity-revealing or null in-
tegrity test cases, all LLMs were able to identify the correct UE be-
havior. Consequently, we carried out more advanced experiments,
in which we designed numerous malicious and complicated test
cases that could lead to vulnerabilities, such as Security Mode
Command with plain header and GSM support in replayed services.
We observed that LLMs were unable to perform better when the
test cases involve complicated parameter changes not mentioned
in the specifications, and when multiple security parameters viola-
tions occur in the same test. Additionally, we observed that LLMs
have the tendency to fabricate answers, which is not uncommon for
probabilistic models, given the perplexed task which requires ad-
vanced logic. To cross-validate the results, we requested the LLMs
to mention the section number of the protocol document from
where answer derives from. In many cases, the section number and
the text were not present in the actual document.

Accuracy. According to our evaluation of LLMs’ performance,
the answers provided by ChatGPT, Bard, and LLaMA-2 were correct
approximately 59%, 57%, and 51% of the time, respectively. Addi-
tionally, there were instances where the answer was correct, but
the explanation was inadequate or incorrect. A better training on
protocol-related documents might help improve the results. How-
ever, foundation LLMs do not offer an option for training the model
due to concerns about potential misuse, copyright violation, ethical
considerations, etc. Instead, they provide a fine-tuning option (typ-
ically for private use without sharing option) where the model’s
output can be refined. Therefore, we thoroughly fine-tuned the
ChatGPT model with a few hundred test case evaluations in our
evaluation. In some cases though, we observed that, due to fine-
tuning, the model can lose its ‘creativity’, meaning it provided the
same textual output that was used during the fine-tuning process,
with limited contribution from its learning process with the specifi-
cations. Additionally, when presented with unfamiliar test cases, it
was unable to provide satisfactory responses.

Current limitations. Our attempt to train LLaMA-2 faced sig-
nificant challenges, primarily due to the extensive time required

for the training process and system limitations that led to crashes.
Another limitation of LLMs is inconsistent responses; for the same
prompt, the model may provide different responses at different
times. To address this inconsistency, LLMs use an option called
temperature, a hyperparameter ranging from 0 to 1 that controls
the randomness of the model’s output. During our experimenta-
tion, we noticed that if the temperature is set too low, there is
less randomness in the answer, and vice versa. We typically opted
for a temperature value of 0.5 to strike a balance. Due to all the
mentioned limitations, we conclude that LLMs are currently per-
forming poorly when it comes to complex test cases and unknown
vulnerabilities.

The LLM-based evaluation is not the primary assessment module
within our framework; rather, it functions as a connected compo-
nent only. Our developed rule-based evaluation provides reliable
and superior performance, as we describe in the next subsection.

6.4 Rule-Based Evaluation Results
Our rule-based evaluation operates by examining the uplink and
downlink commands from the test case file. For each test case, the
system starts fresh, with the uplink/hooking point indicating the
current UE state. Then, the program checks the generated pcap file,
identifying the uplink message first, followed by the downlink mes-
sage, and then determines the immediate next uplink NAS message
or UE response. The UE response is influenced by several factors
such as UE state, uplink and downlink messages, downlink mes-
sage security, and downlink parameters. For example, if the uplink
command is Registration Request and the downlink command
is Identity Request, when the downlink message is set as a plain
message, the possible UE response could be Identity Response
or no response at all depending on the downlink parameters (e.g.,
requested identity type in the downlink parameter such as SUCI,
GUTI, S-TMSI, etc.) and the message sequence. For this particular
scenario, the evaluation program does not expect any other types
of UE response such as Authentication Response or Security
Mode Complete. Consequently, the rule-based methodology knows
the correct sequences and parameters at each stage. In cases where
unexpected results are recorded, the program will detect that as an
unusual test case and flag it for manual checking. Therefore, for
each type of the mentioned 77 uplink and downlink message pairs,
we implemented the state logic based on them, and the program
makes decisions from the UE output. By automating this process, we
can easily run test cases related to well-known vulnerabilities too,
without the need of manual inspection. Generally, we conducted
thousands of test cases for each UE, and we are summarizing the
primary findings below.

UE Identities. For the downlink Identity Request the evalu-
ation program found none of the tested UE revealed their IMEI or
any identity other than the SUCI before the AKA was completed,
which indicates that they passed the test. However, it was detected
that our Huawei device provides SUCI identity for two occasions,
when the identity octet is 000, meaning unused identity type or
identity not available at the network side, and the identity octet
is 001 meaning requested identity type SUCI (more details in [1,
in Table 9.11.3.3.1]). The rest of the tested UEs responded with a
SUCI identity only for the identity with octet 001. According to the

96

ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Table 4: Performance analysis of the framework

Downlink NAS message Test case run
per UE per uplink

Generation time
per test case

Execution time
per test case

Evaluation time per test case Evaluation accuracy
ChatGPT Bard LLaMA-2 Rule-Based ChatGPT Bard LLaMA-2 Rule-Based

Identity Request 200 0.002 12.50 10.75 7.56 210.85 0.29

≈ 59% ≈ 57% ≈ 51% 100%

Authentication Request 400 0.002 13.03 10.38 7.62 217.81 0.70
Security Mode Command 900 0.002 13.10 10.55 8.34 208.18 0.87
Configuration Update Command 300 0.002 12.38 11.20 7.59 204.50 0.28
Service Accept 400 0.002 12.50 10.08 8.64 209.02 0.16
Service Reject 400 0.002 13.10 10.25 8.29 213.41 0.30
GMM Status 200 0.002 13.40 11.29 8.45 210.93 0.27
Deregistration Accept 200 0.002 13.23 10.50 7.81 211.87 0.15
Deregistration Request 400 0.002 12.49 10.23 8.06 205.95 0.38
Authentication Reject 200 0.002 13.20 10.44 8.16 213.21 0.16
Registration Reject 300 0.002 12.41 11.08 7.33 213.81 0.29
Note: All units of time are in seconds

protocol, 000 is not a listed value and shall be interpreted as SUCI,
if received by the UE. Therefore, it clearly shows that except for
Huawei all other devices fail to adhere to the protocol.

Furthermore, the AMF can request the identity from a UE in plain
messages until the security establishment. Therefore, technically,
the downlink command Identity Request in plain messages,
after the uplink NAS messages Registration Request, Identity
Response, and Authentication Response should be considered
valid. Our test case evaluator detected that except for the Realme
phone, all UEs provided the SUCI identity when requested after the
aforementioned three uplink commands. Realme only provided the
SUCI identity when it was requested after Registration Request
and did not respond in the other two cases. Although there are
no severe security ramifications, the evaluation program detected
different behavior among the UEs.

Anti-Bidding-down Between Architectures.ABBA is used in
Authentication Request and Security Mode Command, standing
for Anti-Bidding-down Between Architectures. This parameter en-
ables the 5G system to enforce that a UE cannot access the network
using older mechanisms that have had vulnerabilities associated
with them. The 5G security architecture [2, in Annex A.7.1] defines
this value as hexadecimal 0000. However, in future releases, this
value could be changed depending on security implementation.
Currently, UEs need to ensure that the value is zero in order to at-
tach to the 5G system [3]. The evaluation program detected that all
UEs provided a positive Authentication Response even though
the ABBA value was set to arbitrary values. Additionally, the NAS
protocol [1, in section 9.11.3.10] states that if the UE receives an
ABBA value different from 0000, the UE shall use that value. Since
these values are not defined yet, the UE does not know which secu-
rity is associated with this ABBA. Therefore, it can be concluded
that currently, all UEs are accepting ‘temporary’ ABBA values, as
implementations are still under development. Therefore, the con-
tribution of this value to improving UE security at this moment is
practical indeterminate and minimal.

Security Headers. The security header specifies the type of
security applied to the NAS message. The specification [1, in 9.3]
outlines five types of headers. These headers mainly indicate the
type of security associated with the message. We generated test
cases in which the downlink message contains the wrong security
headers. For instance, the Configuration Update Command uses

header type 2, but the test case selected a different header under-
mining security. The goal is to force the test UE to accept wrong
headers, leading to potential security deactivation or implications
in the already activated security context. In the experiments, we ob-
served that if the Security Mode Command is sent after Security
Mode Complete (repeating), OnePlus accepts the Security Mode
Command for security header types 1 and 3. However, in practice, the
Security Mode Command typically uses header type 3 in the nor-
mal sequence. The remaining UEs either responded with Security
Mode Reject (unspecified) or did not respond at all. For all
other downlink NAS messages, all the UEs responded only when
the correct security header type for that message was used.

Out-Of-Sequence Messages. According to NAS specification,
before security context establishment, some downlink NAS mes-
sages are to be processed by the UE even if those are without
integrity protection [1, in 4.4.4.2]. Some of our test cases invoked
such a scenario by sending a plain Identity Request message
after Registration Complete. The evaluation program found that
Huawei, Oppo, and Realme handle this situation by either not re-
sponding at all or by deregistering from the network. However, One-
Plus and Honor exhibited different behavior. They did not provide
the identity but initiated either a PDU Session Establishment
Request or Service Request. Subsequently, the service request
was rejected by the AMF with the cause stated as UE identity cannot
be derived by the network. This demonstrates the varied approaches
of UEs in handling such situations. Thenwe also checked the reverse
scenario by sending a security-protected type message before AKA
completion, for example, by sending a downlink command such as
Configuration Update Command or Deregistration Request
after the initial Registration Request. We tested all the UEs for
this type of scenario. Our evaluation program did not observe any
security concerns during these tests as all the UEs handled such sit-
uations by either not responding, getting deregistered, or, in some
cases, providing a 5GMM cause of Message not compatible with the
protocol state.

Other Parameters. For the tests containing incorrect or invalid
RAND, AUTN, or ngKSI values, almost all devices behaved securely.
They either did not respond at all, silently deregistering from the
network, or provided a 5GMM cause, such as ngKSI already in
use or non-5G authentication unacceptable. Similarly, for malicious
Security Mode Command with NIA0 (null integrity protection), all

97

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

devices either responded with a Security Mode Reject or silently
discarded the message, indicating passing the test.

6.5 Framework Performance
Table 4 displays the overall performance of our framework. The
number of test cases depends on the parameters (listed in Table 5).
For each uplink, we generated the following numbers of downlink
messages and ran the test cases. Approximately 26,000 test cases
were run for each UE. Since the test cases sometimes violate the
protocol, not all of them get executed (approximately 80% of them
are executed). It took on average 0.002s to generate a test case. For
the test case execution, each time the core and RAN needed to be
restarted, and the UE needed to be toggled from airplane mode,
which required an average of 13s for each test case. ChatGPT and
Bard are backed by powerful computation resources providing eval-
uation within approximately 10s. However, LLaMA-2, running on
our server, took approximately 4 minutes to deliver an evaluation.
The rule-based evaluation shows the best timing performance by
providing the evaluation in less than a second. Due to the gener-
ative nature of LLMs, there was a lack of consistency over time.
There were instances where the answer was correct, but the expla-
nation was poor or incorrect. Nevertheless, we believe that proper
training may help improve the scenario. In contrast, the rule-based
evaluation, which followed our given logic, resulted in almost all
evaluations being correct upon cross-checking.

7 DISCUSSION
7.1 Challenges & Lessons Learned
Connectivity. During our experiments, we discovered that con-
necting a COTS 5G UE to a custom 5G network is not always
straightforward. In our setup, five out of eight 5G SA UEs success-
fully connected to the network, while the remaining three failed
to initiate a Random Access procedure. We utilized a GPSDO for
improved clock accuracy, a Faraday cage to mitigate interference,
and experimented with changing critical parameter values. How-
ever, some UEs were still reluctant to connect to our (open-sourced
software) 5G network. Carrier policies may also restrict or limit
access to the 5G network based on the PLMNs. We found that An-
droid maintains a list of carriers [4], which is intended to be saved
inside the operating system. Choosing any of them during USIM
programming helps the connection to some extent. When the USIM
was programmed with one of the listed PLMNs, it enabled the 5G
network mode. This also helped the UE to fetch access point-related
information from the OS. Unfortunately, even with commercial set-
tings, the lack of security keys can limit the evaluation reaching up
until the Security Mode Command during the registration process.
Regarding UE connection to the laptop, though USB 3.0 is back-
ward compatible with USB 2.0, some UEs did not show a workable
connection if USB 3.0 was used. Additionally, some UEs showed
unstable connection due to power-related issues, using a powered
USB hub solved that problem. The Scrcpy [14] library can be used
to see the UE display via USB connection when the UE is inside of
a Faraday cage.

Framework. The test case generator can produce a large number
of test cases; however, not all test cases exhibit the same level
of quality and effectiveness. Therefore, it is up to user to decide

which type of test case to generate, as a massive generation of test
cases may result in redundancy. After many trials and errors, we
determined the optimal time interval between two successive test
case executions. This is crucial because, after each test case, the
entire system needs to be torn down and deployed again. Open5GS
has several services that utilize different ports, requiring us to
terminate all services and close all ports. Under optimal settings,
an average of four test cases can be executed per minute.

Test case evaluation is not a straightforward task; many parame-
ters and conditions need to be checked. It is very common that for
some test cases, the UE does not respond at all. In such a scenario,
we consider the UE to have passed the over-the-air test, but internal
firmware checks may also be needed for conclusive answers. We do
not deploy such checks, when the UE silently ignores a downlink
message, as access to the firmware incurs additional complexity
and its out-of-scope in this work. If, for some reason, the evaluation
program is unable to reach a concrete decision for any test result, it
reports that as inconclusive, and some simple manual checks may
be required.

7.2 Future Work
Our framework is designed to support 5G control-plane testing.
However, currently, it supports only the NAS layer. In the future, we
plan to extend to the RRC layer as well. Our framework is capable
of conducting tests in various UE states (e.g., registered, deregis-
tered, and CM connected-idle) that occur during the normal flow.
Nonetheless, in the future, we will investigate changing the UE’s
state by accommodating more complicated aspects of security test-
ing (i.e., multiply hooked downlink messages) to advance beyond
the scope of the initial UE attachment. The performance evaluation
of LLMs was not impressive. It clearly shows that out-of-the-box
LLMs are not a good choice for this type of security testing evalu-
ation. Foundation LLMs (such as ChatGPT and Google Bard) are
intelligent and powerful but do not have a sharing option. Therefore,
we plan to train a LLaMA-2 model for better performance.

8 CONCLUSION
In this paper, we present the first over-the-air automated 5G SA
security testing framework for 5G SA UE. The framework consists
of full automation packages where test cases for the NAS layer
can be generated, executed, and evaluated in an automatic manner.
The developed tool can help save a significant amount of time to
conduct these labor-intensive tasks and reduce human error. We
successfully applied our testing framework to five 5G SA UEs and
reported identified flaws. The comparative test results clearly show
that different UEs handle the security issue differently. We also
provide our experience and lessons learned from the experiment,
which could be useful for the research community.

ACKNOWLEDGEMENTS
This work was supported by the Center for Cyber Security at New
York University Abu Dhabi (NYUAD), the National Science Foun-
dation under grant number 2144914, and a gift from Google.

98

ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

REFERENCES
[1] 3GPP. 2023. 5G; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3.

3rd Generation Partnership Project (3GPP). Version 17.9.0.
[2] 3GPP. 2023. 5G; Security architecture and procedures for 5G System. 3rd Generation

Partnership Project (3GPP). Version 17.8.0.
[3] 5G America. 2020. Security considrations for the 5G era. https:

//www.5gamericas.org/wp-content/uploads/2020/07/Security-Considerations-
for-the-5G-Era-2020-WP-Lossless.pdf.

[4] Android. 2023. Android carrier list. https://android.googlesource.com/platform/
packages/providers/TelephonyProvider/+/refs/heads/main/assets/sdk33_
carrier_id/carrier_list.textpb.

[5] Lina Bariah, Hang Zou, Qiyang Zhao, Belkacem Mouhouche, Faouzi Bader, and
Merouane Debbah. 2023. Understanding Telecom Language Through Large
Language Models. arXiv:2306.07933

[6] Evangelos Bitsikas, Syed Khandker, Ahmad Salous, Aanjhan Ranganathan, Roger
Piqueras Jover, and Christina Pöpper. 2023. UE Security Reloaded: Developing a
5G Standalone User-Side Security Testing Framework. In Proceedings of the 16th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
’23). ACM, New York, NY, USA, 121–132. https://doi.org/10.1145/3558482.3590194

[7] Open Cell. 2023. Commercial UEs tests. https://open-cells.com/index.php/2022/
07/26/ues.

[8] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, Xiaofeng Wang, Xiaozhong Liu,
Haixu Tang, and Dongfang Zhao. 2022. Seeing the Forest for the Trees: Under-
standing Security Hazards in the 3GPP Ecosystem through Intelligent Analysis
on Change Requests. In 31st USENIX Security Symposium (USENIX Security 22).
USENIX Association, Boston, MA, 17–34.

[9] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue, Xiaozhong Liu,
Kai Chen, Haixu Tang, and Baoxu Liu. 2021. Bookworm Game: Automatic
Discovery of LTE Vulnerabilities Through Documentation Analysis. In 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA. IEEE,
1197–1214. https://doi.org/10.1109/SP40001.2021.00104

[10] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper. 2019. LTE
security disabled: misconfiguration in commercial networks. In Proceedings of the
12th Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
’19). ACM, New York, NY, USA, 261–266. https://doi.org/10.1145/3317549.3324927

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805

[12] Kaiming Fang and Guanhua Yan. 2018. Emulation-Instrumented Fuzz Testing of
4G/LTE Android Mobile Devices Guided by Reinforcement Learning. In Computer
Security - 23rd European Symposium on Research in Computer Security, ESORICS
2018, Barcelona, Spain, Vol. 11099. Springer, Berlin, Heidelberg, 20–40. https:
//doi.org/10.1007/978-3-319-98989-1_2

[13] Matheus E. Garbelini, Zewen Shang, Sudipta Chattopadhyay, Sumei Sun, and
Ernest Kurniawan. 2022. Towards Automated Fuzzing of 4G/5G Protocol Imple-
mentations Over the Air. In GLOBECOM 2022 - 2022 IEEE Global Communica-
tions Conference. IEEE, 86–92. https://doi.org/10.1109/GLOBECOM48099.2022.
10001673

[14] Genymobile. 2023. Scrcpy. https://github.com/Genymobile/scrcpy.
[15] Google. 2023. Google Bard. https://bard.google.com.
[16] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo

Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin R. B. But-
ler. 2022. FirmWire: Transparent Dynamic Analysis for Cellular Baseband
Firmware. In Proceedings of the 29th Annual Network and Distributed System
Security Symposium, (NDSS’22), San Diego, California, USA. The Internet Society.
https://doi.org/10.14722/ndss.2022.23136

[17] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.
2018. LTEInspector: A Systematic Approach for Adversarial Testing of 4G
LTE. In Proceedings of the 25th Annual Network and Distributed System Secu-
rity Symposium, (NDSS’18), San Diego, California, USA. The Internet Society.
https://doi.org/10.14722/ndss.2018.23313

[18] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS ’19).
ACM, NY, USA, 669–684. https://doi.org/10.1145/3319535.3354263

[19] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowdhury, and
Elisa Bertino. 2021. Noncompliance as Deviant Behavior: An Automated Black-
Box Noncompliance Checker for 4G LTE Cellular Devices. In ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic
of Korea) (CCS ’21). ACM, New York, NY, USA, 1082–1099. https://doi.org/10.
1145/3460120.3485388

[20] Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md. Mukit Rashid, Ali
Ranjbar, Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan Wang, Mujtahid Akon,
Rui Zhang, and Syed Rafiul Hussain. 2023. Hermes: Unlocking Security Analysis
of Cellular Network Protocols by Synthesizing Finite StateMachines fromNatural
Language Specifications. arXiv:2310.04381

[21] Bedran Karakoc, Nils Fürste, David Rupprecht, and Katharina Kohls. 2023. Never
Let Me Down Again: Bidding-Down Attacks and Mitigations in 5G and 4G.
In Proceedings of the 16th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’23). ACM, New York, NY, USA, 97–108. https:
//doi.org/10.1145/3558482.3581774

[22] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino. 2021. ProChecker: An
Automated Security and Privacy Analysis Framework for 4G LTE Protocol
Implementations. In 41st IEEE International Conference on Distributed Com-
puting Systems, ICDCS 2021, Washington DC, USA. IEEE, 773–785. https:
//doi.org/10.1109/ICDCS51616.2021.00079

[23] Imtiaz Karim, Kazi Samin Mubasshir, Mirza Masfiqur Rahman, and Elisa
Bertino. 2023. SPEC5G: A Dataset for 5G Cellular Network Protocol Analy-
sis. arXiv:2301.09201

[24] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongkwan Kim, Yongdae Kim, and
Insu Yun. 2023. BASECOMP: A Comparative Analysis for Integrity Protection
in Cellular Baseband Software. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 3547–3563.

[25] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae Kim. 2021.
BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications
for L3 Protocols. In Proceedings of the 28th Annual Network and Distributed System
Security Symposium, (NDSS’21), San Diego, California, USA. https://doi.org/10.
14722/ndss.2021.24365

[26] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. 2019. Touching the Un-
touchables: Dynamic Security Analysis of the LTE Control Plane. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA. IEEE, 1153–
1168. https://doi.org/10.1109/SP.2019.00038

[27] Daniel Klischies, Moritz Schloegel, Tobias Scharnowski, Mikhail Bogodukhov,
David Rupprecht, and Veelasha Moonsamy. 2023. Instructions Unclear: Unde-
fined Behaviour in Cellular Network Specifications. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3475–3492.

[28] Manikanta Kotaru. 2023. Adapting Foundation Models for Information Synthesis
of Wireless Communication Specifications. arXiv:2308.04033

[29] Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: Baseband San-
itized Fuzzing through Emulation. In Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’20). ACM, New
York, NY, USA, 122–132. https://doi.org/10.1145/3395351.3399360

[30] Lusani Mamushiane, Albert Lysko, Hlabishi Kobo, and Joyce Mwangama. 2023.
Deploying a Stable 5G SA Testbed Using srsRAN and Open5GS: UE Integration
and Troubleshooting Towards Network Slicing. In 2023 International Conference
on Artificial Intelligence, Big Data, Computing and Data Communication Systems
(icABCD). IEEE, 1–10. https://doi.org/10.1109/icABCD59051.2023.10220512

[31] Meta. 2023. LLAMA 2. https://llama.meta.com.
[32] Open5gs. 2023. Open5gs. https://open5gs.org.
[33] OpenAI. 2023. OpenAI. https://openai.com.
[34] Osmocom. 2023. PySim. https://osmocom.org/projects/pysim/wiki.
[35] CheolJun Park, Sangwook Bae, BeomSeokOh, Jiho Lee, Eunkyu Lee, Insu Yun, and

Yongdae Kim. 2022. DoLTEst: In-depthDownlinkNegative Testing Framework for
LTE Devices. In 31th USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 1325–1342.

[36] MinWoo Park. 2023. Bard API. https://github.com/dsdanielpark/Bard-API.
[37] Srinath Potnuru and Prajwol Kumar Nakarmi. 2021. Berserker: ASN.1-based

Fuzzing of Radio Resource Control Protocol for 4G and 5G. In 17th International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, 295–300. https://doi.org/10.1109/WiMob52687.2021.9606317

[38] David Rupprecht, Kai Jansen, and Christina Pöpper. 2016. Putting LTE Security
Functions to the Test: A Framework to Evaluate Implementation Correctness. In
USENIX Workshop on Offensive Technologies (Austin, TX) (WOOT’16). USENIX
Association, USA, 40–51.

[39] srsRAN. 2023. srsRAN. https://www.srsran.com.
[40] srsRAN. 2023. Tested COTS UEs. https://docs.srsran.com/projects/project/en/

latest/knowledge_base/source/cots_ues/source/index.html.
[41] Swind. 2020. Pure Python ADB. https://github.com/Swind/pure-python-adb.
[42] HaohuangWen, Phillip Porras, Vinod Yegneswaran, Ashish Gehani, and Zhiqiang

Lin. 2024. 5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection
Service. In Proceedings of the 31st Annual Network and Distributed System Security
Symposium (NDSS’24), San Diego, California, USA. The Internet Society.

[43] Chuan Yu, Shuhui Chen, Ziling Wei, and Fei Wang. 2023. SecChecker: Inspecting
the security implementation of 5G Commercial Off-The-Shelf (COTS) mobile
devices. Comput. Secur. 132 (2023), 103361. https://doi.org/10.1016/j.cose.2023.
103361

99

https://www.5gamericas.org/wp-content/uploads/2020/07/Security-Considerations-for-the-5G-Era-2020-WP-Lossless.pdf
https://www.5gamericas.org/wp-content/uploads/2020/07/Security-Considerations-for-the-5G-Era-2020-WP-Lossless.pdf
https://www.5gamericas.org/wp-content/uploads/2020/07/Security-Considerations-for-the-5G-Era-2020-WP-Lossless.pdf
https://android.googlesource.com/platform/packages/providers/TelephonyProvider/+/refs/heads/main/assets/sdk33_carrier_id/carrier_list.textpb
https://android.googlesource.com/platform/packages/providers/TelephonyProvider/+/refs/heads/main/assets/sdk33_carrier_id/carrier_list.textpb
https://android.googlesource.com/platform/packages/providers/TelephonyProvider/+/refs/heads/main/assets/sdk33_carrier_id/carrier_list.textpb
https://arxiv.org/abs/2306.07933
https://doi.org/10.1145/3558482.3590194
https://open-cells.com/index.php/2022/07/26/ues
https://open-cells.com/index.php/2022/07/26/ues
https://doi.org/10.1109/SP40001.2021.00104
https://doi.org/10.1145/3317549.3324927
https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-98989-1_2
https://doi.org/10.1007/978-3-319-98989-1_2
https://doi.org/10.1109/GLOBECOM48099.2022.10001673
https://doi.org/10.1109/GLOBECOM48099.2022.10001673
https://github.com/Genymobile/scrcpy
https://bard.google.com
https://doi.org/10.14722/ndss.2022.23136
https://doi.org/10.14722/ndss.2018.23313
https://doi.org/10.1145/3319535.3354263
https://doi.org/10.1145/3460120.3485388
https://doi.org/10.1145/3460120.3485388
https://arxiv.org/abs/2310.04381
https://doi.org/10.1145/3558482.3581774
https://doi.org/10.1145/3558482.3581774
https://doi.org/10.1109/ICDCS51616.2021.00079
https://doi.org/10.1109/ICDCS51616.2021.00079
https://arxiv.org/abs/2301.09201
https://doi.org/10.14722/ndss.2021.24365
https://doi.org/10.14722/ndss.2021.24365
https://doi.org/10.1109/SP.2019.00038
https://arxiv.org/abs/2308.04033
https://doi.org/10.1145/3395351.3399360
https://doi.org/10.1109/icABCD59051.2023.10220512
https://llama.meta.com
https://open5gs.org
https://openai.com
https://osmocom.org/projects/pysim/wiki
https://github.com/dsdanielpark/Bard-API
https://doi.org/10.1109/WiMob52687.2021.9606317
https://www.srsran.com
https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/cots_ues/source/index.html
https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/cots_ues/source/index.html
https://github.com/Swind/pure-python-adb
https://doi.org/10.1016/j.cose.2023.103361
https://doi.org/10.1016/j.cose.2023.103361

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Syed Khandker et al.

APPENDIX
Table 5: Downlink NAS messages with supported parameters

Downlink NAS message Parameters

Identity request identity type, security header type
Authentication request abba, rand, autn, ngksi tsc, ngksi ksi, eap message, security header type

Security mode command

abba, ngksi tsc, ngksi ksi, eap message, imeisv request, security header type
nas security integrity algorithm, nas security encryption algorithm
selected nas eps security algorithm, replayed UE security capabilities nr ea
replayed UE security capabilities nr ia, replayed UE security capabilities eutra ea
replayed UE security capabilities eutra ia, replayed UE security capabilities gea
additional security information derivation, replayed s1 UE security capabilities nr ea
replayed s1 UE security capabilities nr ia, replayed s1 UE security capabilities eutra ea
replayed s1 UE security capabilities eutra ia, additional security information retransmission

Deregistration request T3346, gmm cause, rejected nssai, security header type, deregistration type tsc, deregistration type ksi
deregistration type switch off, deregistration type access type, deregistration type reregistration required

Service reject T3346, T3448, GMM cause, eap message, PDU session status, security header type

Service accept T3448, eap message, PDU session status psi, PDU session reactivation result psi
PDU session reactivation result error cause

Configuration update command SMS indication type, security header type, network daylight saving time
Registration reject T3346, T3502, eap, nssai, GMM cause, security header type
GMM status GMM cause, security header type
Deregistration accept security header type
Authentication reject security header type

Prompt: This is a security test for a UE. The UE sent a registration request to the AMF. Then the AMF sent an identity request to the UE.

The downlink message sent by the AMF was a plain 5GS NAS message, with the requested identity type = IMEI. Upon receiving the downlink message,

the UE did not respond. At that time, AKA was not completed. The packet capture during the test is as follows:

0.0, UE to AMF, InitialUEMessage, Registration request, Registration request

0.0012581348419189453, AMF to UE, SACK (Ack=0, Arwnd=106496), DownlinkNASTransport, Identity request

Did the UE pass or fail the test? If a decision cannot be made, report it as inconclusive. Always include the reason for your decision.

ChatGPT answer: Based on the provided information, the UE behavior appears to be secure. The UE did not respond to the identity request from the

AMF because the AKA (Authentication and Key Agreement) was not completed. This is a security measure to prevent unauthorized access or

manipulation of the UE's identity. The UE is correctly waiting for the completion of the AKA before responding to the identity request, which is

a good practice in maintaining the security of the UE. Therefore, the UE passes the test.

Figure 4: A brief example of a prompt with the associated answer

Figure 5: Our developed test case generator

[{
"ue_ul_handle": "null",
"dl_reply": "null",
"command_mode": "null",
"dl_params": "null"

},
{
"ue_ul_handle": "authentication_response",
"dl_reply": "security_mode_command",
"command_mode": "send",
"dl_params": {
"ngksi_tsc": "1",
"ngksi_ksi": "3",
"abba": "0000",
"nas_security_encryption": "OGS_NAS_SECURITY_ALGORITHMS_NEA3",
"nas_security_integrity": "OGS_NAS_SECURITY_ALGORITHMS_NIA0"

}
},
{
"ue_ul_handle": "null",
"dl_reply": "null",
"command_mode": "null",
"dl_params": "null"

}]

Figure 6: An example test case

100

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 5G Standalone Architecture
	2.2 Related Work

	3 Security Testing Automation Framework Design
	3.1 Overall Goal and Challenges
	3.2 High-level Framework Overview

	4 Automated Test Case Generation
	5 Automated Test Case Evaluation
	5.1 LLM-Based Evaluation
	5.2 Rule-Based Evaluation

	6 Experiments and Results
	6.1 Experimental Setup
	6.2 Performance Analysis of Automated Test Case Generation
	6.3 LLM-Based Evaluation Results
	6.4 Rule-Based Evaluation Results
	6.5 Framework Performance

	7 Discussion
	7.1 Challenges & Lessons Learned
	7.2 Future Work

	8 Conclusion
	References

