
Counting Stream Registers:
An Efficient and Effective Snoop Filter Architecture

Aanjhan Ranganathan1, Ali Galip Bayrak2, Theo Kluter3, Philip Brisk4, Edoardo Charbon5, Paolo Ienne2

1System Security Group
ETH Zürich

CH-8092 Zürich, Switzerland

2School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland

3Department of
Engineering and Information Technology

Bern University of Applied Sciences
CH-3012 Bern, Switzerland

4Department of
Computer Science and Engineering
University of California, Riverside

Riverside, CA, USA 92521

5Department of Micro-electronics
and Computer Engineering

Delft University of Technology
2628 CD Delft, The Netherlands

Abstract—We introduce a counting stream register snoop filter,
which improves the performance of existing snoop filters based
on stream registers. Over time, this class of snoop filters loses the
ability to filter memory addresses that have been loaded, and
then evicted, from the caches that are filtered; they include cache
wrap detection logic, which resets the filter whenever the
contents of the cache have been completely replaced. The
counting stream register snoop filter introduced here replaces the
cache wrap detection logic with a direct-mapped update unit and
augments each stream register with a counter, which acts as a
validity checker; loading new data into the cache increments the
counter, while replacements, snoopy invalidations, and evictions
decrement it. A cache wrap is detected whenever the counter
reaches zero. Our experimental evaluation shows that the
counting stream register snoop filter architecture improves the
accuracy compared to traditional stream register snoop filters for
representative embedded workloads.

Keywords-snoopy coherence protocol, snoop filter, stream register,
counting stream register

I. INTRODUCTION
Broadcast-based snoopy hardware coherence protocols play

an important role in small-scale multiprocessor systems. In a
write-invalidate snoopy coherence protocol, whenever a value
is modified in one of the processor’s caches, a bus transaction
is initiated to signal the change to the other caches. Each cache
controller in the system snoops the bus: if the requested line of
data is present (a hit) in the respective cache, the controller
takes the appropriate action, depending on the nature of the
request, and the status bits associated with the line (for
instance, it may invalidate the cache line); if the line is not
present in the cache (a miss), then no action is taken. A
significant number of snoops miss in most of the caches; taken
in aggregation, these misses consume excessive energy.

A snoop filter is a small cache-like structure that is placed
in front of the cache itself, but provides inexact hit/miss
information [13]. A snoop lookup either guarantees that the
requested line is not in the cache, or returns a maybe signal,
indicating that the line may or may not be present, and thus
forwards the request to a cache. A snoop filter lookup
consumes significantly less energy than a cache lookup.

Each snoop lookup that results in a guarantee yields a net
energy savings over a cache lookup; however, each snoop
lookup that returns a maybe consumes more energy, as the
cache must then be probed. Snoop filters generally yield a net
energy savings because a significant number of lookups can be
avoided in most cases. The challenge is to design snoop filters
that are highly accurate, while ensuring reasonable costs for
maintaining and updating the data contained in the snoop filter.

One of the most effective snoop filter architectures is based
on stream registers, which provide a compact set-based
representation of a contiguous range of memory blocks [6, 16,
17]. Stream registers can track the blocks that are allocated to a
cache, which allows them to act as snoop filters; however, there
is no efficient method to update a stream register when a block
is removed from the cache. Over time, the accuracy of a stream
register degrades, as it records all of the blocks that have ever
been loaded into the cache, many of which have been evicted,
as opposed to the exact set of blocks in the cache at a given
time. Snoop filters based on stream registers include additional
mechanisms to overcome these limitations, which are described
in much greater detail in Section III.

This paper introduces a new snoop filter architecture based
on our notion of a counting stream register, which overcomes
many of the limitations of existing stream register snoop filters.
Our experiments demonstrate that counting stream registers
filter a higher percentage of memory accesses compared to
traditional stream registers, which improves energy savings.

II. INCLUSIVE AND EXCLUSIVE SNOOP FILTERS
Snoop filters can be categorized as being either inclusive or

exclusive [1, 13]. An inclusive snoop filter records a superset
of the blocks that are cached. A request that misses in an
inclusive filter is guaranteed to miss in the cache, so there is no
need to forward the request. On the other hand, a hit in an
inclusive snoop filter may or may not hit in the cache, so the
request must be forwarded. In contrast, an exclusive snoop
filter maintains information about blocks that are not cached. A
hit in an exclusive snoop filter guarantees that the cache does
not contain the block, so there is no need to forward the
request. A miss is inconclusive, so the request must be
forwarded to the cache for processing.

978-1-4673-2297-3/12/$31.00 ©2012 IEEE 120

A snoop filter lookup consumes less energy than a tag
lookup in the cache. Therefore, a result indicating that a block
is not in the cache saves energy. In contrast, an inconclusive
result increases energy consumption, as both the filter and the
tag array are accessed. Consequently, the system behavior must
satisfy two key criteria for snoop filters to be effective:

(1) The vast majority of snoop lookups are cache misses.

(2) The snoop filters are effective, i.e., they detect would-
be cache misses correctly the majority of the time.

If the first criterion is not satisfied, then most filter accesses
return an inconclusive result, and the tag would be looked up
anyway; a system without snoop filters would be more
effective. If the second criterion is not satisfied, the majority of
lookups do not hit in the cache, but the filter is ineffective; a
system without snoop filters would be preferable, as it would
eliminate a larger number of unnecessary snoop filter accesses.

III. STREAM REGISTER SNOOP FILTERS
Researchers at IBM introduced a Stream Register-based

snoop filter, which was used in the Blue Gene/P supercomputer
[6, 16, 17]. This filter is inclusive, and uses stream registers to
encode cache blocks stored in the cache. Each stream register
(SR) is composed of a base register, a mask register, and a
valid bit. Intuitively, the base register encodes the starting point
of an array under traversal, while the mask register encodes the
entries of the array that have been accessed as offsets of the
base. The offsets are not represented explicitly, as this would
require a separate register for each entry. Instead, the mask
represents a superset of the offsets that have been accessed.

We explain the behavior of the SR-Filter with an example
taken from IBM’s papers. Two hexadecimal addresses are
loaded: 0x1708fb1 and 0x1708fb2. The first address is copied
to the base register, and the mask register is initialized to all
ones—i.e.,

base = 0x1708fb1

mask = 0x7fffffff

The two least significant bits of the two addresses differ.
When the second address is loaded, the two least significant
bits of Mask are set to zero, and Base is overwritten with the
second address—i.e.,

base = 0x1708fb2

mask = 0x7fffffc

The two least significant zeroes in the mask register
indicate that the two addresses that have been loaded into the
register differ in the least two significant bits. The SR indicates
that the data cache may contain four addresses—0x1708fb0,
0x1708fb1, 0x1708fb2, and 0x1708fb3 is a superset of the two
addresses contained in the cache. In this state, this SR can
successfully filter any address other than the four listed above.

Over time, more and more unique addresses will be fed to a
given SR, and more and more of the bits in the mask will be set
to 0. Thus, the space of all possible addresses that the stream
register can filter will decrease over time. Eventually, all of the
mask bits become zero, and the SR filters no further addresses.

 There is no general mechanism to remove a specific
address from the SR without compromising correctness.
Instead, the SR is reset whenever the cache has been
completely replaced relative to some initial state. This is called
a cache wrap. Active SRs cannot just be cleared; instead, their
contents are copied to a history SR. A history SR is treated as a
second SR for the purpose of filtering, but its contents are not
updated until the next wrap occurs. This organization with both
an active and a history SR guarantees correct functionality.

There is no need to limit the snoop filter to a single SR
active and history pair. As shown in Figure 1, the actual filter
contains a bank of SRs, along with cache wrap detection and
update logic, which flushes the registers when it dectects a
wrap. Detecting a cache wrap is not a trivial problem and may
require significant storage and logic. The detector’s design has
been only cursorily addressed in literature [6, 16, 17] with one
such implementation patented [7].

One efficient implementation, for instance, is circuitry
tightly integrated into the cache, thus requiring a full-custom
design methodology. Full-custom design is reasonable for
high-performance computing, but is unreasonable for
embedded systems, where designers are unlikely to have access
to this type of custom memory. Memories are generally
provided by vendors of intellectual property (IP) in the form of
standard single- or dual-port memory generators, and
individual macros cannot be modified without significant
designer effort and additional cost to the system.

A simpler SR-filter could be reset periodically, but correct
operation requires a cache flush, which would cost significantly
in performance and in energy. Instead, for easy implementation
in an ASIC flow, we introduce an important modification to the
SR-filters and make cache wrap detection or flushes
unnecessary without deteriorating their filtering performance.

IV. COUNTING STREAM REGISTER SNOOP FILTER
Here, we introduce the Counting Stream Register-based

snoop filter CSR-filter, which addresses the shortcomings of
the SR-filter discussed in the preceding section. The CSR-filter
eliminates the cache wrap detection logic, replacing it with a
direct-mapped update unit instead. In the CSR-filter, each
stream register is augmented with a counter; the counter
bitwidth is limited by the number of lines that can be stored in
the cache: for an 8KB cache with 32-byte lines, no more than 8
bits would be required. The counter bitwidth is independent of
the page size, which affects the bitwidth of the base and mask
registers, as discussed in IBM’s papers [6, 16, 17].

Figure 1. Architecture of a SR-filter.

121

Figure 2. CSR-filter hit detection logic.

Figure 2 shows the snoop hit mechanism. The bus address
is split into three parts: A set of cache lines (offset) is grouped
into a page, and a set of bits (idx) is used to index the direct-
mapped snoop filter table. The most significant remaining bits
(page tag) are used as the tag for the base register. When a new
cache line is loaded, the base page register is updated with the
page tag, and all bits of the mask register are set to 1, indicating
that all bits of the base register are valid. In addition, the
counter, initially set to zero, is incremented. Similar to the
example used in Section III, after loading both the addresses
0x1708fb1 and 0x1708fb2, the contents of the base and mask
registers are, base = 0x1708fb2, mask = 0x7ffffffc. The value of
the counter is 2, since the counter is incremented for every new
cache line load and two cache lines were loaded.

The counter is used as a validity checker and eliminates the
need for the valid bit in the original SR-filter. Consecutive
loads update the mask register and increment the counter.
Cache line replacements, snoopy invalidations, and evictions
decrement the counter i.e., an eviction or invalidation of the
address 0x1708fb1 will decrement the counter to value 1. No
modifications are necessary to the base and mask register
contents. The stream register is effectively emptied when the
counter resets to zero: this is the same functionality as cache
wrap detection, but much simpler. The counter also eliminates
the need to employ a cache/snoop filter flushing mechanism.

V. EXPERIMENTAL SETUP

A. Experimental Platform
Our experimental platform was an internally developed

FPGA-based soft processor emulation system running on a
Xilinx Virtex-II FPGA. The processors in our system are 6-
stage single-threaded RISC pipelines that implement the Open-
RISC [14] instruction set. The size and associativity of the
instruction and data caches for each processor in the system are
configurable. An atomic bus interconnects the processors to
one another and to the memory controller.

We instantiated a 5-core system that runs at 50 MHz. The
system includes a 32 MB off-chip DRAM, which is used as a
shared memory, and a variety of performance counters, whose
measurements are used to generate results. All benchmarks
were compiled using a “newlib”-based gcc 3.4.4 tool-chain for
the Open-RISC.

Snoop filters were added to the OpenRISC cores thereby
permitting us to evaluate the percentage of snoops that would
be filtered. However, the filters sit in parallel to the L1 caches,
and do not interfere with their operation. The performance
numbers were estimated based on the penalty of an extra cycle
during a “hit” in the filter for systems with SR and CSR-filters.

We modeled a system similar to IBM’s Blue Gene/P, which
maintains data integrity by using a write-invalidate cache
coherence protocol with write-through L1-caches. In principle,
a write-back cache configuration with a hardware coherence
protocol would likely perform better; but, the configuration we
used placed more stress on the snoop filters, which favored
differentiation between the SR- and CSR-filters.

B. Benchmarks
We use the EEMBC MultiBench suite of parallel embedded

workloads for our experimental evaluation. Table I lists the
benchmarks that we used in our study. As our system DRAM
capacity is limited to 32 MB, we had to limit the number of
workloads executed and analyzed to about 75% of the total.

The EEMBC benchmarks are written using a generic API
that is independent of an operating system. Developers who
wish to use the EEMBC suite must first port the system APIs to
a specific platform, operating system, and tool chain. Our
platform, at present, lacks an operating system; it is
programmed using a small library of rudimentary functions that
perform memory management, I/O operations, and facilitate
threads. Consequently, we modified the EEMBC suite to utilize
our software library and to execute on a 5-core system.

The EEMBC MultiBench suite is multithreaded and is
parallelized using a master-slave organization. One processor,
the master, performs initialization, task management, and
finalization; tasks are distributed to the slave processors, which
perform the actual work. The OpenRISC processors are single-
threaded, so each slave processor executes at most one task at a
time, while the master processor queues future tasks.

The EEMBC benchmarks measure multicore performance
across various degrees of computational intensity. The
benchmark suites include workloads targeting the fields of
image and video processing, cryptography, networking,
encoding and automotive applications. Image and video
processing involve continuous memory load/store operations.
Cryptographic benchmarks such as MD5 exploit the system’s
computational resources and reveal memory bottlenecks, as
several intermediate values of the ciphering are stored and
retrieved during execution. This wide variety of the EEMBC
workloads behavior enables us to convincingly generalize the
results we have obtained to other embedded workloads.

TABLE I. EEMBC MULTIBENCH APPLICATIONS USED IN OUR STUDY.

Category Benchmarks

Image Processing Image rotation, RGB to CMYK
conversion

Video Processing H.264 video encoding

Networking IP packet check, IP reassembly,
TCP/IP network simulation

Coding Huffman

122

C. Energy Model
A realistic estimation of the total system energy including

the CPU pipeline, I/O and peripherals becomes specific to a
given system, and hence, we present an isolated memory
subsystem energy model. The model takes into account the
energy consumption of the instruction and data caches, the
interconnect bus, and the shared memory. It is important to
recognize that the energy consumed by the memory subsystem
is only a fraction of the total system energy.

CACTI 5.3 [20] provided per-access (read/write) energy
estimates for each memory structure in our system. This
information was collected into tables, and we used a standard
profiling-based table-lookup methodology to estimate energy
consumption, similar in principle to tools used in cycle-
accurate software simulators. We used the 90nm technology
node, which is popular in current embedded system designs,
and determined the read energy, write energy, leakage energy,
and snoop lookup energy for a variety of cache configurations.
We considered both write-through and write-back caches.

The total energy consumption of the system was modeled
considering the number of data and instruction cache write and
read accesses: NICR, NICW, NDCR, NDCW; and the number of bus
transactions, NBT. The snoop energy for each data cache access
was calculated based on the number of snoopable transactions,
NSTRANS, and the energy consumed for a single data cache tag
array look-up ETAGLU. This snoop energy is summed into the
total energy consumed by the data cache.

The energy to perform one data/instruction cache read/write
are provided by CACTI, and are denoted by EICR, EICW, EDCR,
and EDCW; the average energy consumed to access the shared
memory unit is ESMRW. Let NP denote the number of processors
in the system. The energy consumed by each instruction and
data cache, EIC and EDC respectively, total bus energy, EB, and
total memory subsystem energy consumption, E, are:

EIC = NP(NICREICR + NICWEICW)

EDC = NP(NDCREDCR + NDCWEDCW + NSTRANSETAGLU)

EB = NBTESMRW

E = EIC + EDC + EB.

Many implementations exist for a cache with a given size and
associativity. For example the cache could be banked or non-
banked; if it is banked, the number of banks may vary; etc. For
each cache that we considered, we looked at all possible
implementations, and, based on the results obtained from
CACTI, selected the one that consumed the least energy.

D. Cache Design Space Exploration
As the behavior of workloads varies largely with different

cache configurations, we desired to determine the best
performing and most energy efficient cache configuration for
each benchmark. The EEMBC benchmarks were run for
various data and instruction cache configurations with varying
sizes and associativity. We varied the cache sizes from 2KB to
16KB, and considered direct-mapped and 2- and 4-way set
associative implementations for each size; all caches used the
Least Recently Used (LRU) replacement policy.

The instruction and data caches, the interconnect bus and
shared memory constitute the memory subsystem of the FPGA
emulation platform. The energy consumed by the memory
subsystem and the performance in terms of execution cycles is
observed for all the cache configurations.

Figure 3 shows an example of a design space exploration
for the Huffman Benchmark; we performed a similar design
space exploration for each benchmark. The configurations that
achieve the fastest execution time and lowest energy
consumption are marked. The results demonstrate that cache
parameters can significantly affect the observed results. Since
the objective of snoop filtering is to reduce memory subsystem
energy consumption, we selected the lowest energy consuming
cache configuration for each benchmark; further experimental
results are reported for this configuration alone.

VI. EXPERIMENTAL RESULTS

A. SR- and CSR-filter Hardware Implementations
Using CACTI 5.3 [20], we modeled the area of SR- and

CSR-filters containing 32, 64, and 128 SRs and CSRs
respectively. For the SR-filter, we did not consider the area
overhead of the update logic and cache wrap detector, which
are considerably smaller than the registers themselves. Table II
reports the results of the comparison.

The CSR-filters are marginally larger than the SR-filters,
due to the extra counter bits; however, this does not account for
the overhead of the update and cache wrap detection logic, so
the SR-filter is expected to be larger than the CSR-filter.
Further experimentation will demonstrate that the CSR-filter
handles evictions, snoopy invalidations, and replacements more
gracefully than the SR-filter, and without the custom wrap
detection logic; as such, we consider it to be the better choice,
especially for cost-constrained embedded systems.

Figure 3. Complete cache design space exploration for the Huffman

benchmark with energy and performance estimates for each of the
configurations. The Low Energy configuration has a performance degradation
of about 7% while the Best Performance configuration consumed almost 2.5

times that of the Low Energy configuration.

TABLE II. AREA ESTIMATES FOR SR- AND CSR-FILTERS WITH 32, 64,
AND 128 SRS AND CSRS RESPECTIVELY. THE SR-FILTER AREA ESTIMATE DOES
NOT ACCOUNT FOR THE CACHE WRAP DETECTION AND UPDATE LOGIC.

Number of SRs SR Area CSR Area
 32 0.040 mm2 0.041 mm2
 64 0.047 mm2 0.060 mm2
 128 0.078 mm2 0.083 mm2

123

B. Filtering Percentages
Next, we compare filtering effectiveness using SR- and

CSR-filters. We considered snoop filters with 8, 16, 32, 64, and
128 SRs and CSRs respectively; Figure 4 reports the filtering
percentage achieved by both filters. The CSR-filter achieved an
equal or higher filtering percentage than the SR-filter in all
cases, due to improved handling of snoopy invalidations.

CSR-filters with fewer registers can achieve higher filtering
percentages than SR-filters with a larger number of registers.
For example, observing the Huffman benchmark in Figure 4(a),
the SR-filters show a gradual increase in filtering effectiveness
as the number of SRs increases, while the CSR-filters display a
consistent filtering rate of 100% across all filter sizes.

Similarly, in Figure 4(d) the CSR-filters achieve a filtering
rate of 95% with 32 CSRs for the H.264 Video Encoding while
the SR-filters require twice as many SRs to achieve the same
filtering percentage. SR-filters equaled the CSR-filters in terms
of filtering percentage for RGB-to-CMYK with 8 SRs/CSRs;
and H.264 Video Encoding with 64 and 128 SRs/CSRs.

Next, we examine RGB-to-CMYK Image Conversion in
greater detail, in order to see why CSR-filters are more
consistent than SR-filters; pseudocode is provided as follows:

/* Calculate complementary colors */
c = 255 - R; m = 255 - G; y = 255 - B;

/* Find the black level K */
K = minimum (c,m,y)

/* Correct complementary color level based on K */
C = c - K; M = m - K; Y = y - K;

Fig. 5(a) and (b) show the filtering percentages of SR- and
CSR-filters for 2MB and 4MB images for RGB to CMYK
image conversion. For 4MB images, the filtering percentage of
SR-filters starts at 80% for filters with 8 SRs, reduces linearly
with 16 and 32 SRs, and then improves to 80% for 64 and 128
SRs. The 8 SRs are mapped through 3 bits of the physical
address space, while a 9-bit offset accounts for all 4 MB of the
image. As the number of SRs increases, more bits of the
address space are required to address the SRs, and fewer bits
are available for the image itself. The CMYK calculation is an
inter-dependent two-step process where several invalidations
and modifications occur, which the CSR-filters detect, but the
SR-filters do not. The increases the uncertainty about the data
present in the cache (the “maybe” condition), which results in a
snoop filter hit, thereby reducing the filtering rate shown in Fig.
5(a). Increasing the number of SRs per filter to 64 and 128
eliminate the uncertainty.

Our CSR-filters act on the invalidations and modifications
more effectively than the SR-filters, as shown in Figure 5(b).
Like the SR-filters, the results are consistent for a 2MB image
regardless of the number of CSRs in the filter; for a 4MB
image, 8 and 16 CSRs appear to be insufficient, while the
filtering percentage remains consistent for filters with 32 or
more CSRs. For both image sizes, SR-filters achieve a
maximum filtering percentage of 80%, while CSR-filters
achieve a filtering percentage of 100% in most cases.

Figure 4. The CSR-filter consistently achieves a higher filtering percentage

than the SR-filter.

Altogether, these results demonstrate that CSR filters are
more robust to workload variability than SR-filters, while
achieving a better overall filtering percentage.

C. Energy Consumption
Our experimental analysis considers the following three

system configurations:

WT: Write-through caches without snoop filters.

WTSR: Write-through caches with SR-filters.

WTCSR: Write-through caches with CSR-filters.

Huffman Encoding and Decoding

Fi
lte

ri
ng

 P
er

ce
nt

ag
e

Number of Stream Registers

RGB-to-CMYK Image Conversion

Fi
lte

ri
ng

 P
er

ce
nt

ag
e

Number of Stream Registers

(a)

(b)

Image Rotation

H.264 Video Encoding

Fi
lte

ri
ng

 P
er

ce
nt

ag
e

Fi
lte

ri
ng

 P
er

ce
nt

ag
e

Number of Stream Registers

Number of Stream Registers

(c)

(d)

124

Figure 5. RGB-to-CMYK conversion with SR-filters (a) and CSR-filters (b).
For SR-filters the filtering rate is inconsistent as the number of SRs increases

for a 4MB image; for CSR-filters, the filtering rate is non-decreasing when the
number of CSRs increases.

As mentioned earlier, the usage of a write-through protocol
was motivated by IBM’s Blue Gene/P supercomputer, which
introduced SR-filters. Our goal was to show that CSR-filters
could be more effective if used in a similar context (albeit, with
different workloads and evaluated using a memory-limited
emulation platform). Coherence with write-through caches is
maintained implicitly by broadcasting invalidation messages
for each write-through to main memory.

Figure 6 reports the memory subsystem energy for the
EEMBC MultiBench suite using the configurations listed
above. For most of the benchmarks, snoop energy was around
8-10% of the total memory subsystem energy without snoop
filters. In many cases, SR-filters and CSR-filters were equally
effective in terms of reducing memory subsystem energy;
however, CSR-filters were clearly more effective for H.264
Video Encoding, Image Rotation, and IP Reassembly.

The granularity of the snoop filters also affects the overall
energy consumption; RGB-to-CMYK Image Conversion is a
typical example of this problem. The algorithm applies a
sliding window to the image to perform the conversion. As the
window moves, more and more addresses are added to the SRs,
despite the fact that the working set at any given time is
relatively small, namely the region of the window itself. Each
new address adds more zeroes to the mask registers without a
reset. Nonetheless, the counting mechanism of the CSR-filters
is more effective than the cache wrap detection and update
logic of the SR-filters.

These workloads do not stress the memory subsystem for
two key reasons. First, the input data was relatively small, due
to the fact that the system is limited to 32MB of off-chip
SDRAM. Second, the parallelization scheme does not lead to
complex data sharing arrangements, and the amount of data
having multiple writers is quite limited. Consequently, we
believe that a larger system with different workloads would
increase the energy advantage of CSR-filters over SR-filters.

Figure 6. Energy consumption of write-through caches (WT), write through
caches with SR-filters (WTSR), and write-through caches with CSR-filters

(WTCSR) for the EEMBC MultiBench suite. Snoop energy was typically 8-
10% of total memory subsystem energy for most benchmarks. CSR-filters
were uniformly more effective than SR-filters across the benchmark suite.

D. Performance
Figure 7 reports the normalized execution time of the

benchmarks for the WT, WTSR, and WTCSR snoop filtering
schemes described in the preceding section. The write-through
schemes incur a significant amount of bus and memory traffic.
Snoop filters add an extra cycle to each memory access that
hits in the cache [13].

The performance degradations we observed were negligible
for most benchmarks, with a maximum of 3% for TPC/IP
Packet Check. Altogether, our results demonstrate that the
reduced energy consumption of snoop filters offsets the
performance overhead.

VII. RELATED WORK
The most comprehensive reference on snoop filters is a

wiki maintained at the University of Toronto [1].

Fi
lte

ri
ng

 P
er

ce
nt

ag
e

Number of Stream Registers

SR-Filters
Fi

lte
ri

ng
 P

er
ce

nt
ag

e

Number of Stream Registers

CSR-filters

(a)

(b)

Huffman Encoding/Decoding

N
or

m
al

iz
ed

 E
ne

rg
y

N
or

m
al

iz
ed

 E
ne

rg
y

RGB-CMYK Image Conversion

N
or

m
al

iz
ed

 E
ne

rg
y

N
or

m
al

iz
ed

 E
ne

rg
y

Image Rotation H.264 Video Encoding

(a) (b)

(c) (d)

TCP/IP Packet Check

N
or

m
al

iz
ed

 E
ne

rg
y

N
or

m
al

iz
ed

 E
ne

rg
y

IP Reassembly

N
or

m
al

iz
ed

 E
ne

rg
y

N
or

m
al

iz
ed

 E
ne

rg
y

TCP/IP Packet Check,
Reassemble and Route

(e) (f)

TCP/IP Network Simulation

(g) (h)

Snoop Energy Cache Subsystem Energy

125

Figure 7. Execution time for each benchmark, normalized to WT. The worst-

case performance overhead observed for WTSR and WTCSR was 3% for
TCP/IP Packet Check.

Snoop filters generally fall into one of three categories:

Destination-based filters: attempt to eliminate tag lookups in
response to a snoop broadcast.

Source-based filters: attempt to reduce the number of snoop
broadcasts.

Other filters: rely on properties of the interconnect network,
virtualization, or application-specific designs.

The SR- and CSR-filters discussed in detail in this paper are
categorized as destination-based filters.

A. Destination-based Filters
Most destination-based filters are classified as either

inclusive or exclusive, as discussed in Section II.

Inclusive filters can be further categorized as superset and
subset filters. Superset filters identify a superset of all of the
lines in the cache, while benefitting from a more space-efficient
representation of this information than tracking every line. The
SR-filters used in IBM’s Blue Gene/P [6, 16, 17] are superset
filters, as are several other designs that track blocks using
counting Bloom filters. The inclusive JETTY [13], one of the
first snoop filters introduced, performs L2 snoop filtering in
SMP systems; to improve performance, it includes a small
table to cache snoop requests that recently missed in the local
cache; accesses that hit in this table can be filtered a-priori.
Ballapuram et al. [5] described a similar snoop filter that
focuses on L1 snoops and includes some features to support
self-modifying code.

Strauss et al. [19] developed an inclusive subset snoop filter
that adds a new coherence state for cache lines. A cache line is
in the supplier state if it may provide a positive response to a
snoop lookup; the subset filter tracks the subset of supplier
blocks that are actually cached; it cannot filter snoops that
access lines in other states. This particular filter was designed
for a CMP with processors connected by a ring topology.

Examples of exclusive filters include the exclusive JETTY
[13] and the range filter used as part of the Blue Gene/P Snoop
filter [6, 16, 17]. The exclusive JETTY [13] maintains a table
of addresses that have been recently snooped and return
negative responses. Lines are removed from the table when
they are loaded into the cache, or to make room for new lines
when table capacity is exceeded.

The range filter [6, 16, 17] finds large range of addresses
and specifies that address within (or completely outside of) that
range are not in the cache, and can therefore be filtered. The
range filter is useful in parallel applications where processors
work on distinct and continuous ranges of memory.

One last destination-based filter, introduced by Atoofian
and Baniasadi [3], is difficult to categorize as either inclusive
or exclusive. Each cache maintains a table of saturating
counters (one per core). When a core sends a request to the
cache, the first step is to check the counter. If the counter is not
saturated, then the cache returns a negative reply, regardless of
whether it contains a copy of the data, under the speculative
assumption that another core will be able to provide the line. If
no core provides the line, then the processor re-issues its
request and all cores perform cache lookups. This filter is area
and energy-efficient, but it is only effective for workloads that
exhibit supplier locality; it is ineffective for other workloads.

B. Source-based Filters
Source-based filters allow local caches to detect that all

other remote caches do not contain the data, and therefore
allows them to suppress snoop broadcasts.

A write-through cache places every write operation on the
bus, and the increased bus traffic leads to increased snoop
lookups at the caches. Write-back caches with cache coherence
protocols are one of the simplest forms of source filtering. A
write-back approach reduces bus traffic by not placing every
cache write on the bus, and instead only writing back when a
remote cache requests the data.

Coherence protocols used in conjunction with write-back
caches play an important role in source filtering as well. For
example, the MSI protocol categorizes each cache line as
M(odified), S(hared), or I(nvalid), while the MESI protocol
adds an E(xclusive) state. If the local cache contains a line in
the exclusive state, there is no need to broadcast an access to
that line, because no other cache contains a copy.

Atoofian et al. [4] developed a source-based snoop filter,
which used saturating counters, sharing some principle
similarities to their destination-based filters [3]. The filter
predicts when remote caches are likely to supply data in
response to a snoop broadcast; when the same processor
services many subsequent requests, the requests are sent
directly to the supplier, as opposed to snoop broadcasts.

Another approach is to provide augment instructions that
access memory with a bit that can be set to suppress snoops [5].
Programmers or compilers could set the bits appropriately
based on their knowledge of the application and its behavior.
This approach requires minimal architectural support, but
requires the ability for a programmer or compiler to understand
the memory layout of the program, and possibly deal with
issues such as pointer aliasing.

Other destination-based filters can be categorized as coarse-
grained, wherein, the filter tracks whether or not at least one
line in a larger region is in the cache; filtering is performed on
the granularity of regions, rather than individual lines. Ekman
et al. [9], for example, track sharing in the operating system on
the granularity of pages.

Huffman Encoding
and Decoding

RGB-to-CMYK
Image Conversion

H.264 Video
Encoding

TPC/IP
Reassembly

TPC/IP
Packet Check

Image Rotation

MD5

WT WTSR WTCSR

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

126

Cantin et al. [8] took a similar approach with their Region
Coherence Array (RCA), which tracks region sizes ranging
from 512 bytes to 8KB, which offers greater flexibility than
fixing the granularity to the page size. Multi-granularity snoop
filters track coarse-grained regions, but within a larger page
[15]. Subspace snooping records sharing information for each
memory page in the page table itself, and therefore relies on
operating system support [10].

RegionScout [12] and RegionTracker [22] sacrifice the
precision of information about regions stored in the cache in
order to achieve efficient hardware implementations.
RegionScout maintains an incomplete list of regions that are
not shared, and cannot answer precisely whether a region is
shared. RegionTracker moves this information into the tag
arrays of the cache, rather than storing it in external structures.

C. Other Filters
Serial snooping [18] distributes messages sequentially to

processors, rather than via broadcast. The scheme is beneficial
if the data is found early in the sequence, but there is a
performance penalty if the data is found late, or is not found.

In-network filtering [2] distributes coarse-grained
coherence information in routers throughout the network.
When a broadcast occurs, the routers create a multicast tree to
send the message to cores that contain the region. The major
limitation is that in-network filtering does not appear to be
compatible with non-adaptive routing protocols.

Virtualized workloads tend to have sharing limited to
threads running on the same virtual machine, and that there is
only need to snoop cores in the same virtual machine [11]. This
approach involves the operating system and hypervisor, and
special care must be taken to facilitate workload migration.

Zhou et al. [23] used a compiler analysis to disambiguate
the memory space of an application into private and shared data
regions; an operating system-supported mechanism was
proposed to suppress all snoops, except for those that access
shared data directly. Yu and Petrov [21] exploited the fact that
in embedded systems, important a-priori knowledge is
available regarding task allocation, sharing patterns of the
processor nodes, and inter-processor communication. Both of
these mechanisms take an application-specific approach to
snoop filter optimization.

VIII. CONCLUSION
The CSR-filter architecture improves significantly over the

SR-filter architecture introduced in IBM’s Blue Gene/P
supercomputer. The CSR-filter achieves a higher filtering
percentage than the SR-filter, often doing so with a smaller
number of stream registers. For the EEMBC MultiBench suite,
the reductions in overall energy consumption were relatively
small for two reasons: (1) our implementation platform limited
the memory footprint; and (2) the workloads are parallelized
into mostly independent tasks with little sharing of data.
Nonetheless, our experiments clearly show that CSR-filters are
more effective than SR-filters. We believe that these results
generalize to other workloads and to L2 snoop filtering.

REFERENCES
[1] http://www.eecg.toronto.edu/~moshovos/filter/doku.php?id=start
[2] Niket Agarwal, Li-Shuan Peh, Niraj K. Jha: In-network coherence

filtering: snoopy coherence without broadcasts. MICRO 2009: 232-243
[3] Ehsan Atoofian and Amirali Baniasadi: Using supplier locality in power-

aware interconnects and caches in chip multiprocessors. J. Systems
Architecture 54(5): 507-518 (2008)

[4] Ehsan Atoofian, Amirali Baniasadi, Kaveh Aasaraai: Speculative
supplier identification for reducing power of interconnects in snoopy
cache coherence protocols. CF 2007: 259-266

[5] Chinnakrishnan S. Ballapuram, Ahmad Sharif, Hsien-Hsin S. Lee:
Exploiting access semantics and program behavior to reduce snoop
power in chip multiprocessors. ASPLOS 2008: 60-69

[6] Matthias A. Blumrich, Valentina Salapura, Alan Gara: Exploring the
architecture of a stream register-based snoop filter. T. HiPEAC 3: 93-
114 (2011)

[7] Matthias A. Blumrich, Alan G. Gara, Mark E. Giampapa, Martin
Ohmacht, Valentina Salapura: Method and apparatus for detecting a
cache wrap condition. US Patent US7386684B2, June 2008.

[8] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith: Improving
multiprocessor performance with coarse-grain coherence tracking. ISCA
2005: 246-257

[9] Magnus Ekman, Per Stenstrom, Fredrik Dahlgren: TLB and snoop
energy-reduction using virtual caches in low-power chip
multiprocessors. ISLPED 2002: 243-246

[10] Daehoon Kim, Jeongseob Ahn, Jaehong Kim, Jaehyuk Huh: Subspace
snooping: filtering snoops with operating system support. PACT 2010:
111-122

[11] Daehoon Kim, Hwanju Kim, Jaehyuk Juh: Virtual snooping: filtering
snoops in virtualized multicores. MICRO 2010: 459-470

[12] Andreas Moshovos: RegionScout: exploiting coarse grain sharing in
snoop-based coherence. ISCA 2005: 234-245

[13] Andreas Moshovos, Gokhan Memik, Babak Falsafi, Alok N. Choudhary:
JETTY: Filtering Snoops for Reduced Energy Consumption in SMP
Servers. HPCA 2001: 85-96

[14] Damjan Lampret. OpenRISC 1000 Architecture Manual, Apr. 2006.
http://www.opencores.org/

[15] Avadh Patel, Kanad Ghose: Energy-efficient MESI cache coherence
with pro-active snoop filtering for multicore microprocessors. ISLPED
2008: 247-252

[16] Valentina Salapura, Matthias A. Blumrich, Alan Gara: Improving the
accuracy of snoop filtering using stream registers. MEDEA 2007: 25-32

[17] Valentina Salapura, Matthias A. Blumrich, Alan Gara: Design and
implementation of the Blue Gene/P snoop filter. HPCA 2008: 5-14

[18] Craig Saldanha and Mikko H. Lipasti: Power efficient cache coherence.
WMPI 2001

[19] Karin Strauss, Xiaowei Shen, Josep Torrellas: Flexible snooping:
adaptive forwarding and filtering of snoops in embedded-ring
multiprocessors. ISCA 2006: 327-338

[20] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn,
Norman P. Jouppi: CACTI 5.1. Hewlett Packard Laboratories Technical
Report HPL-2008-20, 2008

[21] Chenjie Yu and Peter Petrov: Low-power snoop architecture for
synchronized producer-consumer embedded multiprocessing. IEEE
TVLSI 17(9): 1362-66 (2009)

[22] Jason Zebchuk, Elham Safi, Andreas Moshovos: A framework for
coarse-grain optimizations in the on-chip memory hierarchy. MICRO
2007: 314-327

[23] Xiangrong Zhou, Chenjie Yu, Alokika Dash, and P. Petrov. Application-
aware snoop filtering for low-power cache coherence in embedded
multiprocessors. ACM TODAES 13(1):1–25 (2008)

127

